
Cognizant Digital Systems & Technology

Pitfalls & Challenges Faced
During a Microservices
Architecture Implementation
Microservices are the de facto design approach for building digital
applications. However, issues highlighted in this paper can and do lead to
implementation challenges and even failures. Here are a few strategies
to avoid and overcome them.

Executive Summary
Organizations across industries are at various stages
of their journey toward adopting a microservices
architecture style.1 Some have been successful in
delivering real business benefits, while others are
still experimenting.

While the benefits delivered by a microservices
architecture such as agility, selective scalability and
availability still hold true, we are dismayed by the various

suboptimal implementations of microservices
architectures that have emerged since our initial take
on the topic.2

This white paper provides readers with guidance on
fundamental design decisions required to properly
implement a microservices architecture to realize all the
benefits available to organizations willing to take
the plunge.

Cognizant 20-20 Insights

February 2020

2 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Microservices architecture pitfalls
A large number of the teams developing systems
based on microservices architecture have
some form of experience in service-oriented
architecture (SOA) that was heavily influenced
by the middleware vendor products such as
enterprise service buses (ESBs) or Web standards
such as Simple Object Access Protocol (SOAP) and
Web Service.

While SOA experience helps in developing
service-oriented thinking, we have found that this
background can also have a negative influence,
resulting in pitfalls such as sub-optimal granularity
of service, representational state transfer (REST)-
only mindset, excessive service calls (chatty
services) and database as shared resource mindset.

Continuous technological improvements have
caused some teams to fall into a technology-only
thinking trap, causing even more complexity when
these systems experience high-volume production
traffic. These pitfalls manifest in multiple forms.
(Read on to see what we have observed across
projects.)

The “micro” in microservices
architecture

Application architects have struggled with the
granularity dilemma for a long time. What’s the
right level of granularity for a system component

to be scoped? How we can maximize reuse for
a system component or service in its functional
form? Basically, identifying the right boundaries
and granularity are two of the biggest challenges
for a solution designer, especially as the selection
depends greatly on the domain and context of the
solution space.

Application developers using microservices style
face similar challenges. Some teams tend to think
of the “micro” in microservices as a lever to design
smaller-scoped systems, while others think of micro
as the lever to deploy and operate manageable
systems. We see three major variations of this issue
in microservices scoping (see Figure 1, next page).

 ❙ Entity scope: Data entity-oriented design
tends to cause inflexibility at the individual
microservices layer and change complexity at
the overall system level.

 ❙ Process scope: Designing microservices at this
level of granularity tends to result in fragile and
volatile services.

 ❙ Utility scope: The notion of utilities treated
as microservices causes the provisioning of
operational sophistication without reaping
adequate business benefits since such
utilities are often non-differentiating to most
enterprises.

Some teams tend to think of the “micro” in microservices as
a lever to design smaller-scoped systems, while others think of
micro as the lever to deploy and operate manageable systems.

Cognizant 20-20 Insights

3 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

While all granularity levels are expected to be
served in a system, the main benefits of such
architecture design can easily be missed; that is,
balancing agility (speed of change) with resiliency
(safety of change). Two issues are typically
observed:

 ❙ It’s difficult to get business buy-in to the
program that’s delivering such services.

 ❙ Operational complexity increases without real
benefits.

Finally, as IT organizations embrace a system
paradigm across all non-trivial business domains,
event-oriented collaboration patterns have
become a mainstay of such microsystem
architecture design. These pitfalls tend to become a
big bottleneck that thwarts event-oriented thinking
on the journey toward evolutionary system design.

To avoid these pitfalls, IT organizations must ensure
that no microservice is designed without an explicit
alignment and traceability with business capability
of the domain, as advocated by bounded context
strategy of domain-driven design.3 In addition, the

microservice designers must pay close attention
to the context-dependent interactions that
the microservice needs to participate in. This
requires the designers to think in terms of loosely
coupled, event-oriented boundaries and the
context mapping.

The database monolith

Microservices adoption moved quickly from an
emerging concept to the de facto design pattern
for application architecture. However, as with any
over-hyped technology, the design patterns and
best practices were not very well established and
understood, which led to poor implementations.

Among the major obstacles are large databases
used as a persistent store for many -- or all -- of the
microservices. This database can lead to a monolith
at the data persistence layer, resulting in several
challenges such as:

 ❙ Performance bottlenecks. One of the key
drivers for microservices architecture is the
ability to scale horizontally and dynamically.

Microservices granularity levels

Figure 1

Issue policy

Address
change

Process
claim

Email

Users Notification

UTILITY

PROCESS

ENTITY

Policy

Claim Customer

Cognizant 20-20 Insights

4 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Advancing Innovation & Time
to Market in Consumer Lending
One of our APAC clients in the consumer lending domain that wanted to enable
innovation and improve speed-to-market transformed a single monolithic application into
microservices with little or no focus on the design aspect of microservices.

The result was 500-plus microservices with extreme complexity leading to performance
bottlenecks due to chatty inter-service communication.

We have recommended a domain-driven rationalization to address this situation. This not
only helps address performance challenges, but also ensures evolution of the application
in a completely autonomous manner.

However, with a monolithic database, the scaling
of microservices puts additional load on the
database, creating a performance bottleneck.

 ❙ Coupling between microservices.
Microservices architectures offer agility in that
they are loosely coupled and independently
deployed. However, if multiple microservices are
tied to the same tables in the database, then any
change in the schema will result in cascading

changes in other microservices, which defeats
the core purpose of microservices.

There are many reasons we have seen that lead to
this anti-pattern; two key ones are risk averseness
to move away from the monolithic database and
database designers who are not fully skilled in
newer patterns like microservices, leading to
traditional database design.

If multiple microservices are tied to the same tables in
the database, then any change in the schema will result in
cascading changes in other microservices, which defeats the
core purpose of microservices.

Quick Take

5 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Overcoming Centralized
Database Shortcomings
One of the new cloud-native features of a consumer lending solution implemented in pure
microservices style was undermined by a single centralized relational database.

This design led to the database becoming a performance bottleneck and hindrance to
system scalability and resilience.

We addressed this issue by refactoring the database into multiple domain-centric physical
instances with microservices-based logical separations. This allowed domain-based
isolation, which enabled resiliency, scalability and performance improvements.

To avoid these pitfalls, IT organizations must
ensure that the database design complements the
microservices by following best practices:

 ❙ Database per service in a no-share model.
Each microservice needs to have full ownership
of the data it requires. This does not mean a
separate physical database but ownership of the
data it masters.

 ❙ Polyglot persistence model. Making a
relational database a default storage of all types
of data leads to poor results, hence all types of
databases (e.g., NoSQL, Graph, in-memory, etc.)
must be used.

 ❙ Adopt CQRS pattern to use read replicas.
Command query response segregation (CQRS)
is an architecture pattern but it can be applied
to microservices database design to answer the
biggest question: Can data be shared between
microservices?

 ❙ Break distributed transactions with a saga
pattern.4 The division of database objects into
groups of logical schemas in bounded context of
the wider transaction boundaries require multi-
phase commits. Avoid this with saga patterns
that keep intermediate states.

Cognizant 20-20 Insights

Quick Take

Cognizant 20-20 Insights

6 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

The REST compulsion

The microservices architecture grew during the
decline of traditional SOA. As most of the traditional
SOA was built on HTTP-based SOAP, the natural
evolution for microservices was to expose its
functionality through HTTP-based REST services.

The pitfall here is that most developers consider
HTTP REST as the default way to expose the
functionality of a microservice rather than
considering asynchronous messaging alternatives.
This leads to various challenges of performance and
complex transaction management.

The key reasons why HTTP REST is used as the
default for microservices implementation:

 ❙ REST API has become very popular
and developers are comfortable with its
implementation.

 ❙ Most developers are not experienced in reactive
patterns and hence avoid implementing services
based on asynchronous messaging.

 ❙ Reactive services need additional messaging
infrastructure to implement besides
microservices, which is not generally available.

To avoid these pitfalls, we recommend the following
best practices as shown in Figure 3 (see next page).

 ❙ Understanding the distinction between API
microservices and core microservices. During
the microservices design, there should be a
clear distinction between API microservices
that expose their functionality to the external
world against core microservices that are used
by other microservices. The core microservices
should be implemented on a reactive pattern.

 ❙ Developer awareness of reactive system
architecture is key. Developers should
understand reactive system architecture and
associated benefits such as responsive and
resilient microservices.

Breaking the data monolith through bounded context and polyglot design

Figure 2

MS 2MS 1 MS 3

NoSQL RDBMS Graph In-memory

POLYGLOT DESIGN

MS 2MS 1

MS1 bounded context
MS2 bounded context

Shared table

Full access

Read only

Full access

7 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Overall, while REST is a very useful protocol
to expose functionality for microservices,
indiscriminate use can lead to challenges that can
be avoided by using asynchronous patterns.

Chatty services

A chatty application is one that relies on numerous
services to fulfill a request or a process. In
most cases, chattiness is a result of designing
microservices that are too fine-grained and break
the bounded context and independent business
capability principle.

While calling other services to fulfill a request is
often considered as normal and acceptable, chatty
services incur numerous overhead such as:

 ❙ Network latency, disk reads, database queries,
etc. on both the calling service and the service
being called.

 ❙ Runtime dependency between the
microservices, resulting in a distributed
monolith. All dependent microservices need to
be available and operational at the same time.

Cognizant 20-20 Insights

Overcoming REST Challenges
One of our large banking clients has implemented a core platform that offers both
message-based and service (REST) interfaces. However, in pursuit of REST-only
integration, the company implemented a REST interface on top of messaging that
resulted in interface complexity, transaction losses and latency issues due to the increased
processing pipeline and number of components engaged.

This is now addressed by offering APIs as either messaging or services. Inter-service
communication is now being handled through messages directly across components,
helping with both loose coupling and high reliability.

Quick Take

Reactive microservices and
integration

For any microservices-based implementation, the
architecture should have a provision for core messaging
infrastructure. For more complex architectures, a more
elaborate event bus architecture should be considered.

Figure 3

Event bus

MS 2 APIMS1 API

Reactive
microservice 1

Reactive
microservice 2

Reactive
microservice 3

8 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

 ❙ Testing, which can become challenging as all the
dependent microservices need to be available.

If such issues are observed, then first revisit the
microservices design to ensure that the essential
principles of domain-driven design have
been followed.

It is also worth analyzing the dependency on other
microservices. If the dependency is on the data
provided by another microservice, then the IT team
should consider replicating that data to avoid the
remote call. This also allows the service to transform
and store the data in a way that is optimal for a given
microservice. Additional benefits result beyond an
avoided remote procedure call. For example, within
customer management and know your customer
(KYC) bounded contexts, a customer snapshot
remains persistent, which avoids the need for a
remote call. See Figure 4.

Cognizant 20-20 Insights

Embracing an Event-Driven
Architecture
A large bank had embarked on a transformation program to modernize its payment
landscape using a microservices architecture style.

A centralized service orchestration model was implemented for payments processing
that led to chattiness between orchestrator and functional services. This affected both
latency and throughput of the platform. Additionally, the orchestrator became a scalability
bottleneck for the system.

Our recommendation was to consider an event-driven architecture and implement long-
running processes using service choreography since it results in a highly scalable and
performant design due to loose coupling and non-blocking.

Sharing data across microservices

Figure 4

Customer management
bounded context KYC bounded context

Contact

Personal
details

Address Customer
snapshot

KYC
details

Customer
service

Customer
service

Quick Take

Cognizant 20-20 Insights

9 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

In some cases, one microservice might need to call
another microservice to trigger the business logic
it contains. In these situations, one service cannot
avoid communicating with the other, but the
IT team can implement it as efficiently as possible
via asynchronous communication protocols
(see Figure 5).

 Technology-only thinking

While designing microservices, we often see
development teams acting in complete isolation
with business stakeholders. IT teams tend to
think that once the business has provided its
project requirements, design is an IT-only activity
and sub-system decomposition, and defining
microservices and release mechanisms are the
technology team’s agenda. This turns out to be
a major shortcoming in projects where business
subject matter experts (SMEs) are not involved in

microservice design systems that are misaligned
with business objectives. In addition, the evolution
of these microservices tends to be influenced by
the technologists.

In the majority of cases, this snag is a result of
problems on both sides. The business thinks
topics like microservice design are too “techie”
and thus believes it has no role to play. IT thinks
business doesn’t have any useful know-how to
contribute to microservices design and thus
shouldn’t be invited/consulted. System designers
create application boundaries that do not align
with the business capabilities and the experience
design that the business requires. The result:
the microservices identified for such projects do
not reflect the business domain (both problem
and solution) and instead are filled with technical
services.

Loose coupling through asynchronous communication

Figure 5

Customer
service

KYC
service

Publish: Initiate
KYC event

Consume: Initiate
KYC event

Event bus

10 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

To avoid this pitfall, solution architects must play a
major role. They need to ensure that business has a
seat at the table while designing microservices and
both business and IT are able to offer reasons about
design for delivery, lifecycle management and
evolution of business capability in scope.

Another major issue in this category tends
to be rooted in the accelerating evolution of
technology. Every few months (sometimes even
weeks) a new shiny technology is released by
vendors who talk up their use of microservices.
While continuous technology evolution is a
good thing, it tends to stimulate interest in the
technology by business and IT teams, who steer
their project in this direction without really
understanding the implications.

An example is Docker and Kubernetes.
Statements like “We are designing our
microservices using Kubernetes” or “These
performance problems will now be gone as we
are structuring our system as microservices on

Docker” are becoming commonplace. We believe
this pitfall is one of the biggest issues facing
microservices adoption today.

Technology is a strong enabler to get
microservices right, but that’s not the endgame.
Teams should not let these technologies steer
their efforts toward microservices. Once they
have designed the right level of microservices
that are aligned to the business being automated,
technology innovation should be used to deliver
the promise of high quality and agility. Some of
the areas where microservices will really benefit
from technology evolution include elements
such as automated deployment, release, scaling,
secure communication, high performance,
availability, monitoring and provisioning. In
fact, our experience suggests that, more than
technology, it’s the culture and systems thinking
that influences how well we deal with these
pitfalls in microservices-based systems.

Confronting the challenges
A microservices implementation is no easy task
and there are many challenges that test a team’s
abilities.

While the pitfalls can be attributed to speed
of change and a lack of perspective (this is just
new SOA technology), there are some genuine
challenges that teams face while adopting the
microservices architecture style.

Although some of these challenges are related
to how systems are designed, others concern

how these systems are operated and managed in
production. For example, architects and developers
at one of Europe’s major banks, whose operations
pivot around a large mainframe and database-rich
landscape, had a hard time grasping the design
of business-aligned microservices using domain-
driven design.

In another case, one of our clients implemented
a series of microservices but had a hard time
achieving production stability of these services

Our experience suggests that, more than technology, it’s the culture
and systems thinking that influences how well we deal with these
pitfalls in microservices-based systems.

11 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Cognizant 20-20 Insights

or obtaining a good view of service integration
across applications. In addition, we observed that
teams faced real challenges in terms of people skills
and capabilities and teams have spent substantial
efforts and money to carry out workforce re-skilling.
We’ll look at intricacies of these challenges next.

Design challenge

Organizations struggle consistently with
microservices design challenges such as
determining the optimal boundaries between the
microservices, size of microservices, integration
between microservices, etc. Microservices
architecture design challenges include:

 ❙ The team only consists of IT specialists or
technology architects. Defining capability-
aligned service boundaries requires domain
experts. Fundamentally, this should be a
combined exercise independent of technology
used.

 ❙ Architects or technologists always consider
data as the most important thing and use a
data-centric view when modeling a problem
domain. Without logic, the data is meaningless.
Hence, architects and technologists should
start with context (business capability) and logic
instead of data.

 ❙ At times, UI screens are used as guidelines
for identifying data ownership and service
boundaries. User interface (UI) doesn’t help
here as data matters only when it is involved
in some business logic -- not when it is just
displayed.

 ❙ There is a tendency to focus on database
transactions instead of business transactions
or business processes. Focus should be on real-
world processes, such as actions, their outcomes
and compensating for the failed actions if
failures occur. A properly designed bounded
context modifies only one aggregate instance
per transaction.

Going Domain Driven
One of our clients faced challenges in correctly modeling the microservice
aggregate – the cohesive core model of any microservice. The team fell into a trap
of designing for compositional convenience and the resulting aggregates were too
large, with data consistency problems.

We recommended a domain-driven design approach to discover the aggregates in
a business operating construct aligned with boundaries called bounded contexts.
This approach resulted in a domain-aligned, coherent model with true invariants
that addressed the data consistency problems.

Quick Take

12 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

 ❙ Developer-centric terms such as create, read,
update and delete are too technical and have
no specific business meaning. The team must
always think from the business’s point of view,
and give a clear context to it.

 ❙ Building a large organization’s system of
microservices is difficult and requires building
a view, context by context. A starting point for
representing a system of microservices can be a
context map.

 ❙ Consistent use of unambiguous language
is missing, which leads to a lack of domain
understanding. The technical and business
obstructions in the language may not discover
the vital concepts hidden or assumed by domain
experts. For example: a customer enrolls using
a social profile. “Enroll” here has a technical
or business obstruction because of various
questions about issues, such as what happens
during enrollment? Is the customer enrolled for
any product/s or is the customer enrolled only to
create his or her profile?

Resiliency challenge

Microservices bring a host of benefits -- primarily
enhanced operational agility; however, a
microservices implementation increases
complexity by its decomposition of application
functionality into many independent deployable
units. One challenge that emerges with this
complexity is of resiliency due to the following
factors:

 ❙ The distributed nature of request processing.
In a microservices environment, most requests
are processed by multiple microservices, which
increases the dependency on network and
infrastructure services, thus increasing the
probability of failure.

 ❙ Challenges in failure detection. In a traditional
monolithic system, failures are simple to detect
due to fewer probable causes and failure of
application as a whole. In a microservices
environment, the failure can be of many causes
such as the microservice itself, the container

Cognizant 20-20 Insights

A Decoupling Approach
One of our financial services clients faced outages on its online portal as result of resource
starvation by a system performance monitoring solution. The agents on the tool exhausted
resources required for business logic processing, causing the portal to go down.

Not isolating the system software from business software was one of the reasons for the
failure, and detecting and isolating it was a difficult job.

The recommendation to decouple the system policy concerns from functional software
was applied through proper runtime-decoupling to resolve this issue. Additionally, the
monitoring and resiliency test practices were enhanced to detect such dependencies
through DevOps continuous integration/continuous delivery (CI/CD).

Quick Take

Cognizant 20-20 Insights

13 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

it is running on, and the network that is
interconnecting the microservices.

 ❙ Recovery after failures. As the failure usually
results in complex intermediate states, it is
often difficult to recover from. While respective
microservices can be restarted, the transactions
that were in-flight must be recovered from their
failure state, which is often difficult.

Some strategies that we have found helpful to
address the challenge of resilience in a distributed
microservices environment include:

 ❙ Observability as a key architecture concern.
For a microservices environment to be highly
resilient it needs observability implemented at
each level (i.e., infrastructure and application).
The capability to log, monitor and trace requests
across the network is key to providing resiliency.

 ❙ Design for recoverability more than failures.
While any well-implemented system is defined
for failures, it is recoverability more than failures
that address the concern of resilience. The
application should have the ability to recover
from a failure automatically at the container
(e.g., restarting a container), a microservice (e.g.,
reinitiating a connection pool) and application
state level (e.g., maintaining consistent state
after recovery).

 ❙ Design for idempotency. One of the key
features to be implemented at the microservice
level to enable flawless recovery is idempotency.

Idempotency is the feature to retry the same
request without impacting the state. With
idempotency, each of the inflight transactions
can be retried without compromising the overall
system state.

 ❙ Delegation of intercommunication to a
service mesh. While some of the microservices
implementations use patterns like a circuit
breaker, in any complex microservices-
based application circuit breaking is not
enough. Implementation of a full-service
mesh (e.g., Istio5) or simpler side car proxy
(e.g., Envoy6) can take away the complexity of
intercommunication.

In summary, resiliency is a big challenge in
microservices-based applications and unless
dedicated architecture and design focus is given,
the desired outcomes will not be achieved.

Complexity challenge

Complexity reduction through well-defined
bounded contexts and communication patterns
is one of the critical benefits that microservices
provide. If done right, microservices offer excellent
support for autonomous evolution of business
capabilities. Typically, such microservices are also
business-capability driven and therefore act as
the common vocabulary used by both business and
IT teams, resulting in effective evolution of business
capabilities.

Complexities introduced by microservices architecture

Figure 6

DEVELOPMENT
COMPLEXITY

DELIVERY
COMPLEXITY

OPERATIONAL
COMPLEXITY

• Design approaches

• Implementation guidance

• Frameworks and libraries

• Integration and data

• Build, integration & testing

• Runtime infrastructure

• Runtime dependencies

• Environment parity

• Deployment automation

• Release strategies

• Scalability & performance

• Runtime monitoring

• Container technology

• Lifecycle management

• Security & resilience

Cognizant 20-20 Insights

However, microservices come in systems, which
means that often any non-trivial enterprise system
tends to have dozens or hundreds of these systems
(each developed as a microservice). As each
of these systems are narrowly focused, single-
purpose microservices, any business process or
user interaction tends to result in invocation and
interaction of multiple microservices, resulting in
challenges across multiple phases of projects:

Development complexity
Microservices development requires teams to
think in terms of distributed application design
and interaction patterns. Applying concepts such
as CQRS, functional interfaces, CAP,7 BASE,8 and
sagas9 in contemporary programming languages
and configuration is not something that developers
are used to.

Moreover, this is a new area of complexity for many
teams. Data persistence and integration requires
them to not just understand aspects such as polyglot
persistence,10 persistence ignorance11 or event-
driven messaging,12 but also poses challenges in
terms of frameworks, libraries and programming
languages to choose from.

Finally, how to build and generate these polyglot
microservices as a coherent whole through the
complex continuous integration/continuous
delivery (CI/CD) pipeline is a major concern that
many teams must overcome. Last but not least,
testing microservices is still an evolving area and
poses a major challenge to the majority of teams.

Delivery complexity
With the advent of CI/CD and automated
infrastructure provisioning through APIs,
deployment and release practices have evolved over
the last few years. In addition, the use of containers
and managed cloud environments in the platform-
as-a service (PaaS) model requires teams to work
with constructs provided by these technologies/
services.

While developing microservices in this environment,
deployment and release is typically coded in the
form of YAML or JavaScript Object Notation (JSON)
scripts and these artifacts have become a first-class
citizen of the code repositories for microservices.
Technology diversity, a lack of standards and a
plethora of agility-oriented release mechanisms
(canary release, blue-green deployment, push-to-

14 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Going Serverless
In one of our serverless microservices-based applications consisting of 100-plus
serverless services, we recommended using log streaming for application logs,
infrastructure logs and security logs to a central log store.

With log streaming, we were able to add various log processors and generate
a variety of real-time metrics such as configured memory vs. memory used.
Ultimately, this technique helped us to establish a centralized log store for
monitoring application, infrastructure and security events in a unified manner.

Quick Take

Cognizant 20-20 Insights

15 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

green release, dark release, “dogfooding,” etc.)
are among the areas of complexity that teams must
deal with.

Finally, the element of release environments
with necessary dependencies required for a
microservices-based system to be deployed, tested
and operated is another area of complexity that
many large enterprises have to solve.

Operational complexity
Once released into production, microservices
present challenges in the areas of capacity
utilization, scaling, failures and monitoring -- to
name a few. Operating an infrastructure with tens or
hundreds of microservices requires sophisticated
tooling for automated provisioning in a secure and
resilient manner.

Technologies such as Kubernetes provide the
necessary foundation for this but require operational
procedures and practices beyond technology. In the
case of monitoring, tools such as ELK,13 Grafana,14
Jaeger,15 Prometheus,16 or cloud providers (e.g., AWS
CloudWatch) help deal with this complexity, but
orchestrating all of these tools at scale is not a trivial
task. If the microservices are operated in container
or serverless runtime, then these complexities are
amplified as the infrastructure is quite dynamic.

Being able to achieve production stability and a
real-time view of the hosted services is anything
but trivial. Security of interactions and APIs across
bounded contexts and partner systems is another
area of complexity. A good API management,
messaging infrastructure and monitoring approach
is essential to overcome these challenges.

We strongly suggest that teams consider these
challenges and set up the right infrastructure,
processes and practices to deal with them
proactively.

Observability challenge

Systems can be understood only if they are
observable. Observability, monitoring and analysis
are in a symbiotic relationship, which is depicted as a
pyramid (see Figure 7).

Key challenges faced by microservices
implementation teams include:

 ❙ Observability vs. monitoring. Observability is
about making the data available from within the
system to be monitored; monitoring is the task of
collecting and displaying that data. Microservices
teams focus on monitoring tools without making
the software observable.

The observability pyramid

Figure 7

OBSERVABILITY

MONITORING

ANALYSIS

16 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

 ❙ Distributed tracing. The most difficult part
of observability is distributed tracing with and
between application services. A great deal of
work is involved in implementing distributed
tracing. Microservices teams lack the underlying
principles of tracing requests that flow between
services. Organizations typically need a cultural
overhaul to embrace observability as part of the
development process.

 ❙ Contemporary tools. Modern application
delivery has shifted to containerization,
microservices, and polyglot environments,
which cause problems for monitoring tools.
The speed of deployment has increased along
with the number of software components that
are deployed. The existing monitoring tools or
production profilers are finding it difficult to
keep pace. Additionally, these tools have trouble
identifying and connecting dependencies
between microservices, especially at the
individual request level.

 ❙ Automating observability. The practicalities
of implementing observability can be quite

significant, which puts pressure on developers.
This results in developers spending time on
writing instrumentation for monitoring rather
than the functional code.

Guidelines that we have found helpful to address
the observability challenges include:

 ❙ Establish standards and governance. For
observability, it is critical to establish standards
and governance. Without standards, the
collection and correlation of event logs
and metrics becomes highly challenging,
compromising the outcomes. IT organizations
must establish the following standards.

 Logging standards:

 > Standards such as, log format, log level usage
and logging frequency.

 > Business data standards: Logging of business
data (masking and hiding).

 > Technology standards: Clear guidelines on
tools usage for dev engineers.

Cognizant 20-20 Insights

Working Around Event-Driven
Obstacles
In one of our banking client’s event-driven straight through processing (STP) applications,
the team was struggling to monitor the event processing.

We proposed a mechanism in which each functional module published an event before and
after processing. We also defined application logging standards, log aggregation and monitoring
approaches, which helped the team to enable effective observability and monitoring.

As a result, incident resolution improved and business KPIs provided real-time insights to the
business.

Quick Take

Cognizant 20-20 Insights

17 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

Governance standards:

 > Tollgates to validate right logging and tracing
done in the functional code.

 > Awareness and enablement of dev engineers
for knowledge and the capability to
implement the right tooling.

 > Feedback loop: Incidents should result in
changes in log/trace implementation.

 ❙ Tooling guidance: Frameworks that automate
logging, tracing and tools for monitoring and
analyzing the metrics.

 > Logging and tracing: Istio, Jaeger, Sleuth,
Zipkin, Dynatrace.

 > Log aggregation: Logstash, Elastic Search,
Graphite.

 > Monitoring and analysis: Prometheus, Kibana,
Grafana.

People challenge

Microservices-style architecture has forced
changes across all three dimensions of system
development -- design, operations and delivery
practice.

As outlined in Figure 8, these systems possess
internet scale characteristics that require
developers to (re)think the way we design
applications. In addition, the environment in which
we operate enterprise applications is changing
dramatically to improve quality of service. Finally,
the practices and processes to deliver software to

business is now strongly influenced by techniques
favoring agility in software delivery.

Given these developments, microservices
developers must evolve their skills and thinking.
Architects and designers need to develop skills
across multiple areas such as evolutionary
architecture, distributed design, polyglot data
architecture, event-centric integration, service
meshes, domain-driven design, CQRS, resiliency
engineering, etc.

Systems engineering and operations need to
develop newer skills in disposable, immutable and
ephemeral infrastructure design, technologies such
as Cloud Foundry, OpenShift, Docker, Kubernetes,
etc. Most of these technologies also require the
operations teams to pick up new skills in systems-
oriented declarative programming as many rely on
software-defined infrastructure models.

In terms of practices, all teams need to ensure
that there is collective broad-based capability on
Lean Product Development (LPD), continuous
delivery and reliability engineering practices.
These practices have become the mainstay of
high-quality software delivery on an ongoing basis.
It is safe to assume that these are prerequisites
for all non-trivial projects based on microservices
architecture.

In our experience, microservices efforts in
enterprise IT organizations are still in their
nascent stage. To move forward, IT management
must invest in people capabilities in addition to

Three dimensions of system development

Figure 8

DESIGN OPERATIONS PRACTICES

•

•

•

•

•

•

• Continuous delivery

• Lean product development

• Reliability engineering

Distributed system of systems

Highly resilient and scalable

Polyglot in nature

Infrastructure as code

Container runtimes

Cloud & PaaS

18 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

technology infrastructure modernization.
These efforts may include a wide variety of
measures such as formal training, certifications
(for specialized technologies), hiring experts to
augment existing teams, creating community
of practices, collaborating with partners for pilot
projects and providing developers with broad

industry exposure by participating in industry
conferences, hackathons, cloud sandbox
environments, specialized labs, etc. Engaging an
external specialist or consultant for a short time to
handle capability enhancement challenges is not a
scalable option.

Looking forward
Microservice architecture style is one of the
prominent and relevant design approaches for
developing cloud-native systems. We strongly
consider that our clients apply this style in
distributed systems development. However, the
pitfalls and challenges presented in this paper
tend to result in sub-optimal applications of this
architecture style, leading to an environment in
which teams start to think that microservices is yet
another adopted fad.

The additional complexity in operations of and
troubleshooting these systems creates further
issues. Hence, we highly recommend keeping an
eye on these pitfalls and proactively addressing the

challenges so that microservices benefits can be
effectively achieved. Wherever any of these pitfalls
or challenges result in tactical decision-making, we
should ensure that such exceptions are handled
though a proper technical debt-management
mechanism.

Finally, the extent to which enterprises can address
these issues depends on infrastructure maturity
and design competency within IT and alignment
of business and IT overall. Try to evolve toward that
state instead of trying to address all of these pitfalls
and challenges upfront, learning and adapting your
approaches along the way.

Cognizant 20-20 Insights

Team Building
One of our clients decided to modernize its IT landscape using microservices architecture
style. Since the domain was complex and the landscape was large scale, we worked
with the client to enable a diverse workforce on microservices design, cloud-native
infrastructure, SRE disciplines and DevOps practices in a dedicated infrastructure setup.

This enablement and competency development led to a strong team of developers across
locations delivering microservices-based projects in a consistent manner.

Quick Take

Endnotes
1 James Lewis, “Microservices,” Martin Fowler, March 25, 2014, http://martinfowler.com/articles/microservices.html.

2 Cognizant, “Overcoming Ongoing Digital Transformation Challenges with Microservices Architecture,” November 2015,
https://www.cognizant.com/InsightsWhitepapers/Overcoming-Ongoing-Digital-Transformational-Challenges-with-a-
Microservices-Architecture-codex1598.pdf.

3 Domain Driven Design -- Bounded Context, https://martinfowler.com/bliki/BoundedContext.html.

4 A saga is a sequence of local transactions where each transaction updates data within a single service. The first transaction
is initiated by an external request corresponding to the system operation, and then each subsequent step is triggered by
the completion of the previous one (Rosa, 2018).

5 Istio, https://istio.io/.

6 Envoy, https://www.envoyproxy.io/.

7 CAP Theorem and Distributed Database Management Systems, https://towardsdatascience.com/cap-theorem-and-
distributed-database-management-systems-5c2be977950e.

8 BASE -- database transaction processing, https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-
transaction-processing/.

9 Saga pattern, https://microservices.io/patterns/data/saga.html.

10 http://www.martinfowler.com/bliki/PolyglotPersistence.html.

11 https://deviq.com/persistence-ignorance/.

12 https://en.wikipedia.org/wiki/Event-driven_messaging.

13 ELK -- Elasticsearch, Logstash and Kibana, https://www.elastic.co/what-is/elk-stack.

14 Grafana, https://grafana.com/.

15 Jaeger, https://www.jaegertracing.io/.

16 Prometheus, https://prometheus.io/.

References
 ❙ A. Brandolini, Strategic Domain Driven Design with Context Mapping, November 25, 2009, Retrieved from infoq.com:

https://www.infoq.com/articles/ddd-contextmapping.

 ❙ M. Fowler, BoundedContext, January 15, 2014, Retrieved from martinfowler.com: https://martinfowler.com/bliki/

BoundedContext.html.

 ❙ D. Rosa, Saga Pattern, January 10, 2018, Retrieved from blog.couchbase.com: https://blog.couchbase.com/saga-pattern-

implement-business-transactions-using-microservices-part/.

Cognizant 20-20 Insights

19 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

http://martinfowler.com/articles/microservices.html
https://www.cognizant.com/InsightsWhitepapers/Overcoming-Ongoing-Digital-Transformational-Challenges-with-a-Microservices-Architecture-codex1598.pdf
https://www.cognizant.com/InsightsWhitepapers/Overcoming-Ongoing-Digital-Transformational-Challenges-with-a-Microservices-Architecture-codex1598.pdf
https://martinfowler.com/bliki/BoundedContext.html
https://istio.io
https://www.envoyproxy.io/
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://microservices.io/patterns/data/saga.html
http://www.martinfowler.com/bliki/PolyglotPersistence.html
https://deviq.com/persistence-ignorance/
https://en.wikipedia.org/wiki/Event-driven_messaging
https://www.elastic.co/what-is/elk-stack
https://grafana.com/
https://www.jaegertracing.io/
https://prometheus.io/
https://www.infoq.com/articles/ddd-contextmapping
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/

Cognizant 20-20 Insights

20 / Pitfalls & Challenges Faced During a Microservices Architecture Implementation

About the authors

Dinkar Gupta
Senior Director & Chief Architect, Cognizant Banking and Financial Services

Dinkar is a Senior Director & Chief Architect with Cognizant’s Banking and Financial Services (BFS)
Technology and Architecture Office. Based in Switzerland, Dinkar leads the practice for Europe and the
UK region. He has a post-graduate degree in computer science and applications from National Institute
of Electronic and Information Technology, India, and has over 20 years of architecture and technology
experience across diverse industry segments with a strong focus on financial services. Dinkar can be
reached at Dinkar.Gupta@cognizant.com | LinkedIn: www.linkedin.com/in/dinkargupta/.

Mrudul Palvankar
Former Principal Architect, Cognizant Banking and Financial Services

Mrudul is a former Principal Architect in Cognizant’s Banking and Financial Services (BFS) Technology and
Architecture Office, where she previously headed the architecture and technology team assisting a global
BFS client. She has a post-graduate degree in business administration from Institute of Management
Development and Research, India, and has 19 years of software development experience across multiple
industry segments. She is also TOGAF certified and is actively engaged in architecture transformation
consulting and solution delivery for BFS customers. Mrudul can be reached at LinkedIn: www.linkedin.
com/in/mrudul-palvankar-593398/.

Acknowledgments
The authors would like to thank their former colleague Vivek Kant (www.linkedin.com/in/vivekkant/)
for his contributions to this white paper.

mailto:Dinkar.Gupta%40cognizant.com?subject=
https://www.linkedin.com/in/dinkargupta/
http://www.linkedin.com/in/mrudul-palvankar-593398/
http://www.linkedin.com/in/mrudul-palvankar-593398/
http://www.linkedin.com/in/vivekkant/

About Cognizant Banking and Financial Services
Cognizant’s Banking and Financial Services business unit, which includes consumer lending, commercial finance, leasing insurance, cards, payments,
banking, investment banking, wealth management and transaction processing, is the company’s largest industry segment, serving leading financial
institutions in North America, Europe, and Asia-Pacific. These include six out of the top 10 North American financial institutions and nine out of the
top 10 European banks. The practice leverages its deep domain and consulting expertise to provide solutions across the entire financial services
spectrum, and enables our clients to manage business transformation challenges, drive revenue and cost optimization, create new capabilities, mitigate
risks, comply with regulations, capitalize on new business opportunities, and drive efficiency, effectiveness, innovation and virtualization. For more,
please visit www.cognizant.com/banking-financial-services.

About Cognizant
Cognizant (Nasdaq-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and technology
models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient business-
es. Headquartered in the U.S., Cognizant is ranked 193 on the Fortune 500 and is consistently listed among the most admired companies in the world.
Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant.

© Copyright 2020, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, mechanical,
photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is subject to change without notice. All other trademarks
mentioned herein are the property of their respective owners.

Codex 5066

World Headquarters

500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277

European Headquarters

1 Kingdom Street
Paddington Central
London W2 6BD England
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102

India Operations Headquarters

#5/535 Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060

APAC Headquarters

1 Changi Business Park Crescent,
Plaza 8@CBP # 07-04/05/06,
Tower A, Singapore 486025
Phone: + 65 6812 4051
Fax: + 65 6324 4051

http://www.cognizant.com/banking-financial-services
http://www.cognizant.com
http://www.twitter.com/cognizant

