
Cognizant 20-20 InsightsCognizant 20-20 Insights

Novmber 2020

Configurability for
Cloud-Native Applications:
Observability and Control
The billowing multi-cloud, with loosely coupled services, requires
better observability of live configuration changes and management
tools. Here’s how to address these challenges.

Executive Summary
Over the last few years, becoming a cloud-native
enterprise has become an obsession for many
organizations. To facilitate this transition, some
enterprises have adopted a hybrid cloud (i.e.,
public and private) approach for its operational
flexibility and greater options of data deployment
and use. Multi-cloud adoption is also on the
rise to prevent vendor lock-in and to give IT the

ability to pick the most suitable offering from the
assemblage of public cloud providers.

These transitions are enabled by implementing
cloud-native principles like containerized
loosely coupled microservices, which leverage
cloud infrastructure. Cloud-native support
spans infrastructure, platform and services
shared across many applications, also referred

Cognizant 20-20 Insights

2 / Configurability for Cloud-Native Applications: Observability and Control

to as tenants. Finally, agility is derived through
automating certain infrastructure elements,
primarily configuration and deployment.1

In order to reduce application or service downtime,
architects choose to design systems where the
configuration can be changed at runtime. Here
is where IT organizations run the risk of injecting
improper or erroneous configurations, which
can lead to service outages or abnormal service
behavior. To overcome this, IT must continuously
monitor system states and corresponding
configurations. Control over configuration
improves operational efficiency and provides
business scalability with speed and automation. It
also protects organizations from reputational or
financial losses owing to incorrect configurations.

Today, configurability and observability are
available as a service, as well as frameworks that
can be integrated with core run-the-business
applications. However, in the proliferating digital
world, configuring and observing tools and
solutions abound, each suited for a particular
platform and environment. Thus, monitoring

becomes complex, particularly when operators
switch between multiple monitoring and
configuration applications – for example, by
switching monitoring between AWS Wavelength,
Google Anthos and Microsoft Azure Stack Edge.

The solution lies in providing a single mechanism
to observe and manage dynamic configurations
across cloud infrastructure providers. This
approach can enable IT to apply the do not repeat
yourself (DRY) paradigm to configuration, to
improve the productivity of the IT staff.2

This white paper focuses on how organizations
can adopt a controlled configuration, treating
configuration as code, and improve the agility
and quality of deployments. While going through
the challenges, we provide recommendations
and a framework that can accelerate cloud-
native application deployments and address
the aforementioned challenges. These
recommendations are based on our experience
in deploying hybrid cloud-native applications for
our customers by using tools that provide dynamic
configuration and control.

Cloud-nativity: A primer
Cloud-native applications are built on the principles
of quick and automated deployment – including
infrastructure and platform – as well as continuous
integration and continuous deployment, the ability
to scale up and down, persistent monitoring and
automated recovery. Configurability requires an
ability to quickly apply and modify configurations
to automate the scaling requirements by activating
new software instances.

Accurate configurations are essential, since
incorrect ones not only affect applications
availability and service configuration, but also
have an impact on downstream applications and

services. When systems are detected as having
incorrect configurations, and are not functioning
as required, then we need to roll back to the
right working combination of configurations.
This is difficult when multiple changes are done
simultaneously to loosely coupled microservices.
Good rollback is made possible by maintaining
proper audit records. Again, the challenge here
is that each cloud platform provider brings its
own tools to configure the software, maintain the
history of changes and provide rollback options.

Since organizations are adopting a multi-cloud3
and/or hybrid strategy, the tools from each plat-

https://aws.amazon.com/wavelength/
https://cloud.google.com/anthos
https://azure.microsoft.com/en-in/products/azure-stack/edge/

Cognizant 20-20 Insights

3 / Configurability for Cloud-Native Applications: Observability and Control3 / Configurability for Cloud-Native Applications: Observability and Control

form must be integrated or orchestrated using
proprietary methods. However, they can be difficult
to maintain and scale. Orchestration tools that
provide a unified interface to manage and control
this heterogeneous landscape are classified as im-
perative or declarative (see additional detail in the
next section). A combination of these tools provides
the capability to react and manage these configu-
rations. With this single system, organizations are
informed of a code change and can then visualize
and understand the impact of the change.

The benefits to IT leaders include the ability
to first foresee and then overcome a variety of
challenges, which start with a means for managing
heterogeneous, hybrid cloud environments. This
enables them to:

 ❙ Quickly and efficiently configure services,
through advanced automation, across the
entire IT landscape: infrastructure, platform,
application and services.

 ❙ Continuously monitor and reconcile differences.

 ❙ Control the changes and reconciliation process
via a customizable workflow.

 ❙ Provide proper visualization of changes to
understand the impact radius of the change.

 ❙ Maintain a history of changes, with the ability
to cherry-pick changes and apply them or roll
back to a defined working set.

 ❙ Migrate data between different environments.

Cognizant 20-20 Insights

4 / Configurability for Cloud-Native Applications: Observability and Control

The declarative or imperative tool trade-off
Contemporary DevOps practices emphasize
the accomplishment of tasks with code rather
than graphical user interfaces. DevOps devotees
have progressed from using custom scripts with
remote command line interfaces (CLIs)4 or using
infrastructure providers’ application program
interfaces (APIs) to configure resources.

With the advent of multi-cloud environments,
third-party and cross-platform tools have become
exceptionally popular. Tools in this category, which
include Terraform,5 Ansible, Chef and Puppet,
can be classified as declarative or imperative.6
An imperative tool has step-by-step instructions on
the sequence of deployment and is better suited
for the flexibility of deployments offered (e.g., Chef
and Ansible).

Declarative tools, on the other hand, provide built-
in support that can help IT organizations reach
the desired state by just providing configuration

values. Declarative tools allow operators to define
a desired system state, and always allow current
configurations to be compared against it. This
approach has certain limitations; mainly, a concrete
syntax or schema has to be defined and agreed
upon.7 Sometimes, these packages do not support
the required custom configurations or interfaces.

Given this dichotomy, IT organizations need a
means for pulling the two categories together into
a single platform. Take the case of declarative tools:
IT needs an ability to insert certain customizations
or functions that are not supported by third-
party vendor packages. Hence, declarative tools
must be extended for custom configurations or
unsupported interfaces. This is because the current
declarations do not support our requirement. Once
this happens, the entire system – infrastructure,
platform, applications and services configuration –
can be managed by a single system.

https://www.terraform.io/
https://www.ansible.com/
https://www.chef.io/products/chef-automate
https://puppet.com/

There are two approaches when code is used to represent
configurations – infrastructure as code (IaC) and configuration as
code (CaC). IaC represents configurations for virtual machines,
networks, storage, etc., whereas CaC represents the configurations
for applications, servers, jobs, etc.

Cognizant 20-20 Insights

5 / Configurability for Cloud-Native Applications: Observability and Control

Integration with source control systems for
a multiuser environment
In a microservices, multiuser, multiple-applications
environment, concurrent changes are executed
simultaneously. Observation of these changes
requires an ability to differentiate and protect
changes made in each of these sessions. In order to
manage the configuration changes in a multiuser
environment, it is necessary to maintain it as a
version of configuration files (versioned artifact).

In order to maintain configuration versions, the
various system and application configurations
need to be stored in a version control system.
Once configuration versions are checked, IT
must maintain the configuration written in a code
format so it can utilize all the features of a version
control system (i.e., difference, patch, merge, etc.).
There are two approaches when code is used
to represent configurations – infrastructure as
code (IaC) and configuration as code (CaC). IaC
represents configurations for virtual machines,

networks, storage, etc., whereas CaC represents the
configurations for applications, servers, jobs, etc.

CaC is a set of prescriptions that allow configuration
changes to be written once and then applied with
DRY principles to avoid repetition and improve
productivity. IT organizations must consider
merging IaC and CaC in a single system. In order
to ensure a common tool for management,
the same language must be used to describe
all configurations. Many languages are used to
describe configurations, such as HCL, YAML and
JSON. Each allows the creation of a controlled
approval workflow similar to merge requests used
for code reviews and to baseline their impact. This
also allows IT to patch or roll back changes in case
they are needed. Once a history of changes is
established, audits can be conducted in the event
the environment is integrated with control tools.

Visualizations and impact radius
In the age of loosely coupled cloud applications,
it is necessary – and often challenging – to figure
out the impact of change. Two categories of
tools are available – generic and domain-specific
visualizations. Generic tools include the text diff
provided by version control tools; some provide
reference to related systems that use the same

configuration and hence might malfunction. Blast
radius is one such tool; it highlights areas of impact
using the dependencies within the configuration.8

Beyond this, organizations must create domain-
specific visualizations. These are custom
visualizations that can provide operators specific

Cognizant 20-20 Insights

6 / Configurability for Cloud-Native Applications: Observability and Control

views in a monitoring dashboard. For multiple
systems operators (delivering video over wired or
wireless connections, for example), it is important
to configure programs and to channel lineups by

different regions or geographies. If one channel
source is changed, it will be useful to visualize where
various packages and programs are impacted.

Security and compliance
These tools are automated and require authorization
tokens.9 Tokens must comply with organization
practices and standards. The security and
management of these tokens must be a top priority.

This can be achieved by integrating with secret
management solutions such as Hashicorp VAULT.
This handles the secret sprawl.10

Multi-cloud support
As organizations embrace a hybrid or multi-cloud
strategy for cloud-native applications, infrastructure
must be spread across multiple clouds to ensure
multiple processing pipelines. Cloud platform
providers often don’t offer tools that allow interaction

with other platforms. Doing so requires an
abstraction of functionality offered by each of the
clouds. Therefore, organizations need platform-
agnostic tools to achieve this, such as Terraform,
Chef and Puppet.

https://www.vaultproject.io/

7 / Configurability for Cloud-Native Applications: Observability and Control

Cognizant 20-20 Insights

Case in Point: Config as Code
Accelerator
Our reference architecture and an accelerator (see Figure 1 , page 10) can solve many of the
aforementioned challenges. It contains all required integrations and has been deployed in
customer locations to manage platform and infrastructure configurations. Here is one such
instance where the accelerator was modified to solve one of our customer’s problem areas.

A global leader in media and entertainment products that power consumer entertainment
experiences needed a better way of configuring shared services while onboarding new
partners and video service providers. As part of its expanded product portfolio, it offers
a suite of component technologies that can be integrated with customer platforms or
deployed as an integrated solution for video service providers. These customers handle
partner site data, applications and platform configuration data. Most of these configurations
are handled by their own operators or are integrated with their partner systems.

As this product portfolio strategy unfolded, it encountered:

	❙ Large cycles while onboarding new operators, which could take weeks to resolve. These
need to be shortened to a day. This caused a delay in its go-to-market strategy for
partners/operators.

	❙ The need among IT staff for in-depth knowledge of the domain to understand the proper
configurations and apply the right configurations.

	❙ Failures of existing configuration processes of its partners to align with the principles of
cloud-native adoption of our client.

With our client, we observed the following:

	❙ A setup was required to separate and store configurations (configuration code, an
artifact) of each operator in each of their environments and for each feature they offered.

	❙ The store needs to maintain versioned artifacts.

	❙ The configurations need to be modelled as domain objects.

Quick Take

8 / Configurability for Cloud-Native Applications: Observability and Control

Cognizant 20-20 Insights

	❙ The relationships need to be visualized in web pages to understand the impact of
changes.

	❙ The changes in configurations need to be observed, reviewed, and approved or rejected.

	❙ Based on the above, a change can continue to stay or be rolled back.

All of these events will enable automation, controlled approval and history preservation of
changes.

We integrated the customer’s platform services with its config as code accelerator to meet
these requirements.

Once config as code was deployed, the following benefits were realized:

	❙ New operators could be onboarded within a day in various environments.

	❙ A configuration prepared for one environment for an operator can be used in multiple
environments.

	❙ Configurations change impact can be visualized using domain-specific visualization
templates. So the impact of change is known without requiring deep know-how of the
application.

	❙ Following cloud-native principles resulted in dynamic configurability that allows
applications to scale.

	❙ New configurations are easy to propagate between various environments.

This has improved the stability of the deployment environments, leading to shorter
verification cycles and reduced operations effort.

Quick Take

Cognizant 20-20 Insights

9 / Configurability for Cloud-Native Applications: Observability and Control

Code as config: Features
The accelerator described above has been
extended and can be integrated with any public
cloud or custom deployment management tool
for managing multi-cloud/hybrid/multi-tenant
applications or services. The framework is built
along DRY principles and provides the following
features:

 ❙ CaC capabilities.

 ❙ A configuration management database that
captures the desired and currently configured
values for various service environments.

 ❙ Methods to observe and approve new configura-
tions on an environment and/or update existing
ones after initial system dependencies are set.

 ❙ Tracking, comparing to a previously configured
state version, and updating of desired and
deployed configurations in various environments.

 ❙ Secured secret storage and role-based access
controls.

 ❙ An audit trail/changelog of all approved, rejected,
implemented changes with success, failure or
rollback states.

 ❙ Ways to visualize and compare the configuration
across environments.

 ❙ Integration with known identity and access

management solutions for security assertion
markup language (SAML)-based authentication,
e.g., Okta for role-based access control.

 ❙ Secure storage with a vault.

 ❙ Open source software deployed in a Kubernetes
environment.

Our approach includes an accelerator that
supports and can be integrated with the following
capabilities:

 ❙ Any platform: AWS, GCP, Azure and Openstack.

 ❙ A variety of version control systems for workflow
management, such as Github and Gitlabs.

 ❙ Many ticketing systems, such as ServiceNow and
JIRA.

 ❙ Numerous virtual network functions, such as
Palo Alto, etc.

 ❙ Software such as Splunk and ELK for monitoring,
notification and alerts.

This solution generalizes the services offered by
configuration management across platforms,
thereby abstracting the details and specifics of each
cloud platform.

https://www.okta.com/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/overview/
https://www.openstack.org/
https://github.com/
https://about.gitlab.com/
https://www.servicenow.com/company.html
https://www.atlassian.com/software/jira
https://www.paloaltonetworks.com/about-us
https://www.splunk.com/en_us/about-splunk.html
https://www.elastic.co/what-is/elk-stack

Cognizant 20-20 Insights

10 / Configurability for Cloud-Native Applications: Observability and Control

Looking forward
Our analysis of the framework’s deployment
provides insights into the best practices for
configuration control in a hybrid/multi-cloud
environment.

Rich visualizations of configuration changes based
on individual domains help IT realize the impact of
change, without understanding the application or
service in depth and avoiding dependency on the

development teams for support. This has helped
in reducing time to productionize applications or
services.

A single monitor for observing and controlling the
configurations helps operators to react to chang-
ing configurations in an informed way. This has
led to reduction in errors (which have not been
quantified here).

The anatomy of a CaC tool

CM
Datastore

Platform
Updates

Operator Config
Requests

Ticketing
System

Connector
Code Config Editor CM REST

APIs
GIT Instance

Web

Github
Config Store

Core Runtime,
Scripts State Monitor

Custom
Provider

REST
API-Based
Config Provider

(CONFIGURED STATE) CONFIGURED DATA IN SERVICE

AUTHORIZED AND ROLE-BASED ACCESS

CM SYSTEM

Web UI Programmatic API

ADVANTAGES OF THE
PROPOSED ARCHITECTURE

Power User
Config edits

Application
Updates

| Extensible for integration with
infrastructure and host
configuration.

| Rich visualizations with deeper
insights on impact.

| Configuration as code, approval
and versioning.

| Vault-based secrets store.

| Scale with Kubernetes.

Platform-Infra-Apps

Figure 1

Cognizant 20-20 Insights

About the author

Varadarajan
Domain Architect, Communications, Media & Technology, Cognizant

Varadarajan is a Domain Architect within Cognizant’s Communications, Media and Technology business
unit. He has over 24 years of development and design experience in IT and related systems. A technology
enthusiast, Varadarajan focuses on applying the latest trends across industries in the communications
and media domains. He has a B.Tech degree from IIT Kharagpur in India. Varadarajan can be reached at
Varadarajan.A@cognizant.com| www.linkedin.com/in/varadarajan/.

11 / Configurability for Cloud-Native Applications: Observability and Control

As demonstrated, to drive the agility of deployment
of cloud-native applications, services, platforms and
infrastructure, with loosely-coupled microservices,
and a multi-cloud strategy, IT organizations need
tools that behave like code. Tools that provide IaC
and CoC aim to cover the full landscape.

Coupled with deep visualizations, version control
and secrets management, IT can address all
requirements without the need to switch between
multiple tools. Passive control of configuration
changes – by observing and reacting – ensures that
operational agility is not compromised.

Endnotes
1 Tom Grey, “5 principles for cloud-native architecture – what it is and how to master it,” June 19, 2019, https://cloud.google.

com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it.

2 https://www.oreilly.com/library/view/97-things-every/9780596809515/ch30.html.

3 https://www.gartner.com/en/conferences/apac/infrastructure-operations-cloud-india/gartner-insights/swg-why-
organizations-choose-a-multicloud-strategy.

4 https://www.w3schools.com/whatis/whatis_cli.asp.

5 https://www.terraform.io/docs/modules/composition.html.

6 Tytus Kurek, “Declarative vs Imperative: DevOps done right,” Ubuntu, blog, Aug. 6, 2019, https://ubuntu.com/blog/
declarative-vs-imperative-devops-done-right.

7 “The architecture of declarative configuration management,” Made of Bugs blog, Nov. 12, 2019, https://blog.nelhage.com/
post/declarative-configuration-management/.

8 https://github.com/28mm/blast-radius.

9 “Token Based Authentication Made Easy” Auth0, https://auth0.com/learn/token-based-authentication-made-easy/.

10 Armon Dadgar, “What is ‘secret sprawl’ and why is it harmful?” https://www.hashicorp.com/resources/what-is-secret-sprawl-
why-is-it-harmful/.

mailto:Varadarajan.A%40cognizant.com?subject=
https://www.linkedin.com/in/varadarajan/
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://www.oreilly.com/library/view/97-things-every/9780596809515/ch30.html
https://www.gartner.com/en/conferences/apac/infrastructure-operations-cloud-india/gartner-insights/swg-why-organizations-choose-a-multicloud-strategy
https://www.gartner.com/en/conferences/apac/infrastructure-operations-cloud-india/gartner-insights/swg-why-organizations-choose-a-multicloud-strategy
https://www.w3schools.com/whatis/whatis_cli.asp
https://www.terraform.io/docs/modules/composition.html
https://ubuntu.com/blog/declarative-vs-imperative-devops-done-right
https://ubuntu.com/blog/declarative-vs-imperative-devops-done-right
https://blog.nelhage.com/post/declarative-configuration-management/
https://blog.nelhage.com/post/declarative-configuration-management/
https://github.com/28mm/blast-radius
https://auth0.com/learn/token-based-authentication-made-easy/
https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-harmful/
https://www.hashicorp.com/resources/what-is-secret-sprawl-why-is-it-harmful/

World Headquarters
500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277

European Headquarters
1 Kingdom Street
Paddington Central
London W2 6BD England
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102

India Operations Headquarters
#5/535 Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060

APAC Headquarters
1 Changi Business Park Crescent,
Plaza 8@CBP # 07-04/05/06,
Tower A, Singapore 486025
Phone: + 65 6812 4051
Fax: + 65 6324 4051

© Copyright 2020, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, mechanical,
photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is subject to change without notice. All other trademarks mentioned
herein are the property of their respective owners.

Codex 5971

About Cognizant Communications, Media & Technology
Cognizant’s Communications, Media & Technology (CMT) business unit helps clients transform into people-centric enterprises — enabling organizations
to create new business models that deliver more personal and relevant customer experiences. We combine human insights with advanced technology to
translate customer needs into differentiated content, products and services that power our clients’ futures. We apply domain expertise and digital know-how
to help CMT companies optimize performance for today and accelerate digital transformation for tomorrow. Our technology innovations, proven solutions,
product and software engineering expertise, creative interactive prowess and global delivery excellence enable businesses to scale to meet the needs of the
market. Visit us at www.cognizant.com/cmt-solutions.

About Cognizant
Cognizant (Nasdaq-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and technology
models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient businesses.
Headquartered in the U.S., Cognizant is ranked 194 on the Fortune 500 and is consistently listed among the most admired companies in the world. Learn
how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant.

http://www.cognizant.com/cmt-solutions
http://www.cognizant.com
http://www.twitter.com/cognizant

