
Digital Business

Accelerating Machine Learning 
as a Service with Automated 
Feature Engineering
Building scalable machine learning as a service, or MLaaS, is critical to 
enterprise success. Key to translate machine learning project success into 
program success is to solve the evolving convoluted data engineering 
challenge, using local and global data. Enabling sharing of data features across 
a multitude of models within and across various line of business is pivotal to 
program success.

Executive Summary 
The success of machine-learning1 (ML) algorithms 
in a broad range of areas has led to ever-increasing 
demand for its wider and complex application, 
proliferation of new automated ML platforms/solutions 
and increasingly flexible use of these techniques by 

nonexperts. Most enterprises began their ML journey 
with projects of simpler analytical complexity because 
they were primarily focused on the maturity of their data 
infrastructure, ML model development process and 
deployment ecosystem. 
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According to a recent O’Reilly published study2,3,4 
roughly 50% of enterprise respondents said they 
were in the early stages of exploring ML, whereas 
the rest had moderate or extensive experience of 
deploying ML models into production. 

Enterprises, irrespective of their maturity, are 
currently focused on managing data pipelines 
and evaluating/developing ML platforms. But 
as they ascend the maturity curve, they need to 
solve the problem of the ML model-related data 
pipeline labyrinth as creation and management 
of these elements are labor-intensive, which over 
time introduces data complexities and related 
operational risks. 

ML is core to the success of digitally native 
businesses such as Uber and LinkedIn for creating 
new products and redefining customer experience 
standards at a global scale. There are certain 
aspects of ML architecture that can be deftly 
adopted by digital immigrant enterprises as they 
seek to mature their use of artificial intelligence (AI).

Creating a feature store, a central repository of 
features (basically any input into an ML model) 
in a store with a marketplace construct, enables 
producers like ML engineers (creating and 
populating new features) to share them with 
consumers like data scientists (building ML 
models). This will reduce GTM substantially, 
along with enabling data lineage and bringing 
governance into the data pipeline labyrinth. For 
enterprises to mature in ML, a focus on setting up a 
feature store will be as essential as the adoption of 
auto ML frameworks, model monitoring and model 
visualization — which was also the outcome noted 
by the recent O’Reilly survey.

This white paper offers insights into why enterprises 
need a fully functional feature store in their ML 
maturity journey and how this can be achieved 
using an operating model that can accelerate 
ML scale goals through automation, making ML 
learning algorithm features reusable, cost-effective 
and tangible. This is critical because our approach 
automates one of the most laborious activities in 
the model lifecycle — feature engineering.
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The need for a centralized feature engineering ecosystem
ML5 is a powerful toolkit that enables businesses 
to strive for excellence, whether it’s new product 
development or achieving operational efficiencies. 
However, ML initiatives entail the development 
of complex systems that behave differently than 
traditional IT systems. 

In fact, ML systems contain inherent risks (e.g., 
complex data pipelines, unexplainable code) 
which, unless addressed properly, lead to high 
maintenance costs over the long run. The 
development of ML code is generally seen as labor-
intensive and complex, whereas other essential 
activities surrounding it are seen as less critical — 
which is incorrect. Rather, data (functions such as 
quality, features, etc.) and resource management 
are equally important for building a successful ML 
infrastructure (see Figure 1). 

The process of building and deploying an ML 
model goes beyond setting up a requisite 
infrastructure. ML projects have a typical timeline 
of two to four months for idea validation and 
prototype development, which often gets extended 
by several more months if prototypes are pushed 
into production. The cycle is repeated for each 
model rebuild iteration or new model development.

Figure 2 (page 4) illustrates an ML project, 
depicting various stages and related efforts. 
Processes with relatively less effort have been 
addressed by the deployment of ML platforms 
like Sagemaker, but key labor-intensive processes 
around data acquisition and processing are 
still repeated in each iteration of the model 
development exercise.

A day in a life of a data scientist (DS) consists 
of deriving insights, knowledge and model 

Figure 1

ML heat map depicting processes and related efforts6
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development from data. (For more on this, read 
“Learning from the Day in the Life of a Data 
Scientist” in our Digitally Cognizant blog). This 
requires data cleansing, transformation and feature 
extraction before building a stitch of ML code. The 
process starts with data extraction in a modeling 
sandbox, on to hypothesis validation, followed 
by deployment of code that requires designing a 
fully fledged data pipeline. The activities happen 
primarily in isolation, which is typical of  
an experimentation phase. 

Upon successful exploration, other key role  
players — like ML engineers and an ML architect — 
must come up to speed and plan necessary  
support activities, which results in a longer 
development lifecycle (see Figure 3). 

During model development, the data scientist 
will build common features and features that are 
specific to the model. Industry standard practice is 
to create extract, transform, load (ETL) pipelines for 
common features while generally bundling model-
specific features within the model itself — which 
leads to the following situations:

Figure 2

Illustrative model lifecycle
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Figure 3

https://digitally.cognizant.com/learning-from-a-day-in-the-life-of-a-data-scientist-codex4748/
https://digitally.cognizant.com/learning-from-a-day-in-the-life-of-a-data-scientist-codex4748/
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 ❙ Each model ends up with a customized data 
pipeline, which become complex to manage  
as they proliferate.

 ❙ The same features are created again and again 
with each iteration of model development or 
model rebuild.

 ❙ It is difficult to track data-feature/model lineage 
since features are spread across data stores, 
which makes it hard to access impact on the 
model due to data drifts. 

Of late, the exploration and adoption of automated 
ML frameworks (like our Learning Evolutionary AI 
Framework, or LEAF) is gaining traction with data 

scientists as they endeavor to address automated 
feature engineering (limited scope), model 
selection and hyper-parameter tuning for the rapid 
development of models. Their inherent automated 
feature engineering is limited to a certain model, 
i.e., it is technology with limited reusability. 

The anatomy of a ‘feature’ and ‘feature store’
A feature is basically any input into an ML model. 
It is a set of variables that are incorporated into an 
ML model with the intention to improve model 
performance and accuracy. Features are derived  
values extracted from files and tables (a database) —  
and more importantly, computed from one or 
more tables. These are usually grouped together 
to minimize operational overhead and optimize 
storage. A feature, for example, can be any column 
with a calculated, flagged or one hot encoded value. 

Here are some sample questions that can be 
turned into features by following relationships and 
aggregations: 

 ❙ “How often does this customer make a 
purchase?” 

 ❙ “How long has it been since this customer’s  
last login?” 

 ❙ “How much does the energy usage vary for this 
customer?” 

 ❙ “Does this customer typically buy luxurious or 
economical holiday packages?”

A feature store is a central repository for storing 
documented, curated, and access-controlled 
features. It is a central place to store features that 
are properties of data, be it in the form of statistical 
derivations, piece of text, image pixel coordinates, 
aggregated value of purchase history, etc. This 
enables feature management to be uniform, 
reliable, reusable and governed.

A feature store shouldn’t be perceived as a type 
of new data store. In fact it should be recognized 
as a store of feature recipes with occasional time 
dependencies. For example, a feature like “number 
of login attempts in the last hour” is used in fraud 

A feature store shouldn’t be perceived as a type of new 
data store. In fact it should be recognized as a store of 
feature recipes with occasional time dependencies.

One common mitigation plan to reduce 
all data-dependency-related risk in a 
ML system is by adopting a centralized 
ecosystem, wherein all features are 
captured and catalogued for use.
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models, customer service models and retention 
models. Each model will be computing it at a 
different historical point — the fraud model perhaps 
during a logon attempt, the customer service call 
at the point someone calls a call center and the 
retention model a certain date for the model to be 
built. But when the feature goes into production, it 
needs to run every single time a customer calls the 
call center (for example).

A feature store enables reusability of features 
across the enterprise, as existing features are 
visible to all potential users (e.g., business analysts, 
business intelligence developers, data scientists, 
etc.) across the business domain. The feature store 
supports feature enrichment, ranking, discovery, 

lineage (both data to feature and feature to model) 
and lifecycle management.

Both development and model serving teams 
need a diverse feature set, which can be met easily 
through the store. This will enable both teams to 
discover, store and manage features, while also 
decommissioning features that are no longer 
needed.

Figure 4 highlights some examples of features 
that are commonly used across different lines of 
business and which get recreated in every instance 
of modeling. If harnessed properly, they can be 
reused across different model sets, thus bringing 
greater operational synergy and accelerating time-
to-market. 

Figure 4

Business use cases where similar features are created and used in different models 

Business Use Case Common Features Use-Case-Specific Features

Credit Risk  
Modeling

Historical transaction data: 
•  Count of transactions in last period
•  Amount of transactions in last period 

Customer demographics data: 
•  Age/age group
•  Marital status
•  Tenure of customer 

Geospatial data: 
•  Transaction location
•  Geographical location of customer 

POS data: 
•  Merchant data
•  Vendor data 

Accounts holding data: 
•  Account information 

Time-specific data:
•  Time interval of transactions
•  Weekdays/weekend indicators
•  Month-end/quarter-end indicators

Historical payment information: 
•  Number of on-time payments in last periods
•  Amount of missed payments in last periods

Customer lifecycle data: 
•  Number of active accounts holding data

Historical delinquency data: 
•  Number of times the customer has been identified as delinquent in last periods

Customer  
Attrition Model

Customer lifecycle data: 
•  Number of active accounts holding data NPS Score

Cost to customer data: 
•  Customer purchase amount
•  Customer purchase products

Customer engagement data: 
•  Call history with customer executives

Recommendation 
Model

Product data: 
•  Product information data
•  Historical product search data

Spend pattern data: 
•  Historical spend in product type and categories

User generated content — ratings and reviews data: 
•  Ratings and reviews of the product provided by the customer  
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How to build a feature store
Digital-native organizations, like LinkedIn,7 Uber 
and AirBnB,8 have achieved ML scale to serve all of 
their AI needs across all their products and regions 
from a single enterprise-wide ML system. In each 
case, a feature store plays a central role in training 
and serving ML models. 

For example, Uber’s Michelangelo9 framework 
democratizes ML and makes scaling AI to meet 
the needs of business as easy as requesting a ride. 
It has a centralized feature store for collecting and 
sharing features. Its platform team curates a core 
set of widely applicable features and data scientists 
contribute more features as part of the ongoing 
model-building process. And metadata created 

for each feature is used to track ownership, how 
it is computed and where it is used. It provides 
functionality to select features by name and join 
keys, and both online and offline pipelines are auto-
configured.

Building a feature store can be broken down to 
development of four key functional areas — feature 
extraction, feature selection, feature synthesis 
and feature governance — along with other 
functionalities (see Figure 5). 

The technical solution design has to be in sync with 
existing IT technologies and related policies, as 
introducing a new technology stack in any digital 
immigrant is a long, drawn-out process. 

Figure 5

Key functionalities that must be built in a feature store in a phased manner
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Figure 6 offers a peek inside into the key technical 
components required and suggested technologies 
to achieve them.

 ❙ Feature computation engine: This executes 
the feature engineering jobs (scheduled or ad 
hoc) using standard frameworks.

 ❙ User interface: An interface for DS (consumers) 
and ML engineers (producers) to explore and 
use features for creating training data sets 
and supporting production models. The store 
provides feature information like ranking, 
definition, version and new request for achieving 
operational efficiencies in the ML model 
lifecycle. 

 ❙ Feature metadata: A storage layer that retains 
feature documents like owners, definitions, 
versions, hierarchies, etc. which is referred to for 
feature discovery.

 ❙ Feature data store: A data layer wherein 
computed features are stored for easy access 
either through an API or UI.

 ❙ Feature governance: Essential component of 
the feature store that governs the access and 
rights to a feature. As the feature store expands 
with thousands of features, controlling access to 
sensitive features and retiring unused features 
becomes more important.

How feature stores function

To build and deploy models rapidly, organizations 
must address the need of feature computing and 
serving as it takes significant amounts of time for 
them to compute. This can be solved by building 
a feature store within each data store and using 
a shared feature computation engine for serving 
features to both batch and real-time models. In an 
ideal scenario, features for each model would be 
pulled directly from the feature store with reference 
to common entities like customer IDs. Figure 7 
(next page) illustrates how data flows into a feature 
store and how it serves both model training and 
production.

Figure 6

Key components required to build a feature store 

Feature Computation Engine
(e.g., Spark, Flink) User Interface 

Feature Metadata 
(e.g., Hive, SQL) 

Feature Data Store
(e.g., Hive, SQL)

Feature Governance
(e.g., Informatica EDC)
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How to generate and capture a feature  
in a store

There are several approaches to creating features in 
a feature store: 

 ❙ Automated feature synthesis: Automated 
feature engineering has become a key ML 
research area. It has led to the proliferation of 
frameworks that can automatically synthetize 
features from one or multiple data tables in 
relational data stores. Genetic algorithms offer 
another approach not only for feature selection 
but also for generation.10 

 > One of the methods for populating feature 
stores is deep feature synthesis,11 which 
can automatically derive predictive models 
from raw data. This is used to automate the 
population of feature stores for structured, 
transactional and relational data sets. 

 > To achieve this automation, we first propose 
using deep feature synthesis algorithms to 
automatically generate features for relational 
data sets. The algorithm follows relationships 
in the data to a base field, and then 

sequentially applies mathematical functions 
along that path to create the final feature. 

 > Second, we implement a generalizable ML 
pipeline and tune it using a novel Gaussian 
copula process-based approach.12

 ❙ Automated extraction of features from the 
existing model can be achieved by using the 
REGEX approach, fuzzy matching and entity 
extraction.

 ❙ Manual creation of new and custom features 
as identified by the data scientist.

 ❙ Feature DNA: Predict feature engineering 
based on attribute usage in new models (e.g., 
guided feature engineering).13

Challenges while populating features 
in a feature store

As enterprises embark on building shared feature 
stores and computation engines, the following 
must be addressed to achieve success: 

 ❙ Feature importance: A feature store provides 
important attributes to ML algorithms, but 

Figure 7

Data flow in a feature store ecosystem
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having too many precomputed elements 
doesn’t necessarily guarantee increased 
model accuracy and it also means additional 
computation and storage increases in 
processing overhead. Defining the right feature 
level, historical duration and hierarchy is key.

 ❙ Feature processing: As enterprises generally 
have different processing engines and stores 
for real and batch data streams, serving both 
through a common feature store can require 
complex reengineering. 

 ❙ Feature complexity: Derived features can be 
complex; it takes time to compute such complex 

features in real time or in the production 
environment. Data scientists and feature store 
governors need to agree as to what needs to be 
preprocessed and which features need to be 
served directly in production.

 ❙ Operating model: Enterprises will have multiple 
data silos and varied data storage technologies. 
Defining the right operating models for 
functionalities that need to be centralized and 
decentralized in a feature store will aid adoption 
across the enterprise. See Figure 8 for an 
illustration of the pros and cons of centralized vs. 
decentralized stores.

Figure 8

Feature store operating model pros & cons
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 ❙ One feature execution environment — centralized historical information on 
logs/execution during fails.

 ❙ One version control environment — ability to see history, enforce peer review 
before rollout of new version/updates (just like with any software updates to 
prod code using Github as an example).

 ❙ Ability to manage central execution in federated environments (H20, lPython, 
Spark, etc.).

 ❙ Centralized database of ALL features (no hidden information, or some teams not 
knowing what others are doing and, usually, doubling their work instead  
of reusing).

 ❙ If for example, S3 is used as the input and output for each feature engineering 
task — then central environment is a key for any future migrations (migrating 
from one environment) rather than migrating a spaghetti of different team 
jobs without central view/control — this future-looking view in terms of future 
migrations/changes is probably the most compelling.

 ❙ Data governance process to validate new rollouts/changes against duplication.

 ❙ Next gen features on top of MDM/data governance like natural language  
search of the features.

 ❙ Ability for BI-level users to find data they need, understand it and use it for 
reporting, etc. 

 ❙ Create overflow jobs to the execution 
infrastructure (H20, IPython, Spark, etc.) but 
cannot manage that execution environment 
directly — need to manage execution in DAG 
fashion.

 ❙ Hard to control/failover final execution 
environment.

 ❙ Teams are forced to use central data 
governance/execution governance tool  
(e.g., Domino + Alation) which slows down a  
bit going to production/changes.
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 ❙ Ad hoc infrastructure usage — independent execution environments,  
so there is less overflow risk.

 ❙ Teams can create their own data governance/execution environment per  
their own strong views.

 ❙ Easier to put into production/changes to a small sub-environment.

 ❙ Migration is a huge problem — any central 
changes will lead to months of reengineering  
in a decentralized fashion prone to mistakes.

 ❙ No central view of all features — hard to reuse/
avoid duplication of effort.

 ❙ BI users can’t see what they can use.
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Feature store business benefits
A feature store does not merely bring cost and 
operational efficiencies through shared computation 
and storage; it also enables the enterprise to achieve 

other business benefits like faster go-to-market, 
improved model accuracy and enhanced IT agility 
(see Figure 9). 

A feature store does not merely bring cost 
and operational efficiencies through shared 
computation and storage; it also enables the 
enterprise to achieve other business benefits 
like faster go-to-market, improved model 
accuracy and enhanced IT agility.

Figure 9

Key feature store benefits
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Potential to reduce 
time-to-market by ~50%

Lower TCO
Automation and simplification 
driven operational synergies

Improved Model Accuracy
Availability of features and  
recommendations will improve 
model performance

Data-Feature-Model Lineage
Improved data quality

Future-Technology-Proof
Centralized processing and 
storage makes future technology 
migration easy 

Adoption of Champion 
Challenger Framework
Brings flexibility to build multiple 
models to solve a problem 
statement
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How a Bank Used AutoML & 
a Feature Store to Enhance 
Fraud Detection
A large global bank wanted to radically transform its credit and debit card transaction  
fraud scoring by moving away from a rule-based system to an AI model-led decision 
engine. The objective was to design a new architecture to build AI models as challenger 
models to existing systems for reducing false positives and improving the fraud  
detection rate. 

The solution adopted was a new fraud modeling ecosystem with AutoML pipelines  
which supported the requirement of running four different fraud models (batch and real 
time) as part of a champion/challenger framework: The champion was the incumbent 
model handling transaction scoring, while the challenger model offered an independent 
model that processed the same transaction in parallel to the champion model before a  
rule system chooses which model score to rely on for transaction approval. 

The flexibility of switching models between batch and real time was achieved by 
developing a feature store with hundreds of features (real time and batch) to support  
all existing and in-flight models. The new system was able to reduce false positives by  
more than 80%; and with the improved fraud detection rate, overall savings were more 
than $60 million.

12 / Accelerating Machine Learning as a Service with Automated Feature Engineering
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Looking ahead
As digital immigrant enterprises ascend the ML 
maturity ladder and embrace new methodologies, 
frameworks and technologies used by digital 
native businesses, they should be mindful that their 
technology platforms, organizational structures, 
business use cases, IT policies and governance, and 
regulatory environment are completely different 
and complex. Frameworks like Uber’s Michelangelo 
need to be customized to individual needs.

Following some initial success in ML projects, it is 
imperative that the organization focuses on how 
to translate that individual success into an ML 
program success. As the journey evolves, focus 
needs to be on change management, governance 
and automation to achieve at-scale ML objectives. 
With a focus on streamlining and automation  
in data engineering, building a feature store is  
the solution. 

Building a feature store is a gradual process and 
should be seen as such, since with every new 
model built, the set of features available expands 
with the store, which influences the development 
of subsequent models as more features become 
available for exploration and modeling. 

Enterprises should consider the following steps: 

 ❙ Build a feature store for databases that are 
commonly used, like customer records or 
transactional data sets (e.g., payment record, 
order history, etc.), which are referenced in most 
business use cases such as customer acquisition, 
retention, fraud and KYC. Understanding that 
they are used for modeling and reporting will 
help in deriving the right feature groups to 
create, compute and share.

 ❙ Start by targeting commonly performed 
featured computations like converting 
categorical to numerical variables, one-
hot-encoding, feature binning, aggregates 
and transformations, as these tasks are 
performed by data scientists in nearly all 
model iterations. This could be followed by 
more complex features like joining multiple 
tables and performing nested functions, or 
complex approaches such as automated feature 
extraction from existing models and feature 
recommendation engines.

 ❙ Pursue change management in terms of 
how model development and deployment 
need to be managed and governed. Every 
data scientist has their own tool preferences 
and preferred ways of performing data analysis 
in their daily activities. Establishing feature 
stores will require that existing preferences 
and processes will be changed or new ones 
implemented. Governance must be put in place 
so that set guidelines on feature computation, 
model development strategies, etc. are followed 
by key stakeholders like ML engineers and data 
scientists.

 ❙ Establishing requisite feature store 
governance is essential from day zero, as 
no enterprise wants to publish and maintain 
duplicate, decaying features. The governance 
needed must provide that fine balance between 
promoting innovation (i.e., identification of new 
features by data scientists) and mandating the 
use of features from the store.
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Amit.Agarwal@cognizant.com    |    www.linkedin.com/in/amit-agarwal-98a4969/?originalSubdomain=uk
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European AI & Analytics Practice Lead, Cognizant 

Matthew O’Kane leads Cognizant’s AI & Analytics practice across Europe. His team helps clients modernize 
their data and transform their business using AI. Matthew brings close to two decades of experience in 
data and analytics, gained across the financial service industry and in consulting. He joined Cognizant after 
leading analytics practices at Accenture, EY and Detica (now BAE Systems Applied Intelligence). Over this 
period, he has delivered multiple large-scale AI/ML implementations, helped clients transition analytics 
and data to the cloud and collaborated with MIT on new prescriptive ML algorithms. He brings a passion for 
the potential for AI and analytics to transform clients’ businesses across functional areas and the customer 
experience. Matthew lives with his wife and two children in Winchester, England. He’s an avid cook, 
enjoying everything from baking with his daughter to experimenting with ‘sous vide’ techniques. He can be 
reached at Matthew.OKane@cognizant.com    |    www.linkedin.com/in/matthewokane/.
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About Cognizant Artificial Intelligence Practice
As part of Cognizant Digital Business, Cognizant’s Artificial Intelligence Practice provides advanced data collection and management expertise, as  
well as artificial intelligence and analytics capabilities that help clients create highly-personalized digital experiences, products and services at every 
touchpoint of the customer journey. Our AI solutions glean insights from data to inform decision-making, improve operations efficiencies and reduce 
costs. We apply Evolutionary AI, Conversational AI and decision support solutions built on machine learning, deep learning and advanced analytics  
techniques to help our clients optimize their business/IT strategy, identify new growth areas and outperform the competition. To learn more, visit us  
at www.cognizant.com/ai. 
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models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient business-
es. Headquartered in the U.S., Cognizant is ranked 193 on the Fortune 500 and is consistently listed among the most admired companies in the world. 
Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant.
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