
Digital Business

Accelerating Machine Learning
as a Service with Automated
Feature Engineering
Building scalable machine learning as a service, or MLaaS, is critical to
enterprise success. Key to translate machine learning project success into
program success is to solve the evolving convoluted data engineering
challenge, using local and global data. Enabling sharing of data features across
a multitude of models within and across various line of business is pivotal to
program success.

Executive Summary
The success of machine-learning1 (ML) algorithms
in a broad range of areas has led to ever-increasing
demand for its wider and complex application,
proliferation of new automated ML platforms/solutions
and increasingly flexible use of these techniques by

nonexperts. Most enterprises began their ML journey
with projects of simpler analytical complexity because
they were primarily focused on the maturity of their data
infrastructure, ML model development process and
deployment ecosystem.

Cognizant 20-20 Insights

October 2019

According to a recent O’Reilly published study2,3,4
roughly 50% of enterprise respondents said they
were in the early stages of exploring ML, whereas
the rest had moderate or extensive experience of
deploying ML models into production.

Enterprises, irrespective of their maturity, are
currently focused on managing data pipelines
and evaluating/developing ML platforms. But
as they ascend the maturity curve, they need to
solve the problem of the ML model-related data
pipeline labyrinth as creation and management
of these elements are labor-intensive, which over
time introduces data complexities and related
operational risks.

ML is core to the success of digitally native
businesses such as Uber and LinkedIn for creating
new products and redefining customer experience
standards at a global scale. There are certain
aspects of ML architecture that can be deftly
adopted by digital immigrant enterprises as they
seek to mature their use of artificial intelligence (AI).

Creating a feature store, a central repository of
features (basically any input into an ML model)
in a store with a marketplace construct, enables
producers like ML engineers (creating and
populating new features) to share them with
consumers like data scientists (building ML
models). This will reduce GTM substantially,
along with enabling data lineage and bringing
governance into the data pipeline labyrinth. For
enterprises to mature in ML, a focus on setting up a
feature store will be as essential as the adoption of
auto ML frameworks, model monitoring and model
visualization — which was also the outcome noted
by the recent O’Reilly survey.

This white paper offers insights into why enterprises
need a fully functional feature store in their ML
maturity journey and how this can be achieved
using an operating model that can accelerate
ML scale goals through automation, making ML
learning algorithm features reusable, cost-effective
and tangible. This is critical because our approach
automates one of the most laborious activities in
the model lifecycle — feature engineering.

Cognizant 20-20 Insights

2 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Cognizant 20-20 Insights

3 / Accelerating Machine Learning as a Service with Automated Feature Engineering

The need for a centralized feature engineering ecosystem
ML5 is a powerful toolkit that enables businesses
to strive for excellence, whether it’s new product
development or achieving operational efficiencies.
However, ML initiatives entail the development
of complex systems that behave differently than
traditional IT systems.

In fact, ML systems contain inherent risks (e.g.,
complex data pipelines, unexplainable code)
which, unless addressed properly, lead to high
maintenance costs over the long run. The
development of ML code is generally seen as labor-
intensive and complex, whereas other essential
activities surrounding it are seen as less critical —
which is incorrect. Rather, data (functions such as
quality, features, etc.) and resource management
are equally important for building a successful ML
infrastructure (see Figure 1).

The process of building and deploying an ML
model goes beyond setting up a requisite
infrastructure. ML projects have a typical timeline
of two to four months for idea validation and
prototype development, which often gets extended
by several more months if prototypes are pushed
into production. The cycle is repeated for each
model rebuild iteration or new model development.

Figure 2 (page 4) illustrates an ML project,
depicting various stages and related efforts.
Processes with relatively less effort have been
addressed by the deployment of ML platforms
like Sagemaker, but key labor-intensive processes
around data acquisition and processing are
still repeated in each iteration of the model
development exercise.

A day in a life of a data scientist (DS) consists
of deriving insights, knowledge and model

Figure 1

ML heat map depicting processes and related efforts6

Configuration ML Code

Data
Collection

Data Verification
Machine

Resource
Management

Serving
Infrastructure

Monitoring

Analysis Tools

Process Management
ToolsFeature Extraction

Cognizant 20-20 Insights

4 / Accelerating Machine Learning as a Service with Automated Feature Engineering

development from data. (For more on this, read
“Learning from the Day in the Life of a Data
Scientist” in our Digitally Cognizant blog). This
requires data cleansing, transformation and feature
extraction before building a stitch of ML code. The
process starts with data extraction in a modeling
sandbox, on to hypothesis validation, followed
by deployment of code that requires designing a
fully fledged data pipeline. The activities happen
primarily in isolation, which is typical of
an experimentation phase.

Upon successful exploration, other key role
players — like ML engineers and an ML architect —
must come up to speed and plan necessary
support activities, which results in a longer
development lifecycle (see Figure 3).

During model development, the data scientist
will build common features and features that are
specific to the model. Industry standard practice is
to create extract, transform, load (ETL) pipelines for
common features while generally bundling model-
specific features within the model itself — which
leads to the following situations:

Figure 2

Illustrative model lifecycle

Development
Environment

Setup

Development
Data Acquisition

Development
Data Feature
Engineering

Model
Development

Model
Deploy-Ready

Production
Environment

Setup

Production Data
Acquisition

Production Feature
EngineeringModel ServingModel Monitoring

Model Rebuild

2–4 weeks 2–6 weeks 4–6 weeks 1–2 weeks

1–2 weeks

1 week

1 month 2–3 months 1–2 months 1–3 months

DATA SCIENTIST

Focused on code generation
without much collaboration with
architects and engineers.

ML ARCHITECT

Wondering what data/IT
architecture changes are needed to
support code.

ML ENGINEER

Wondering what data pipeline
reengineering are needed to
support the codes.

Working solo

Figure 3

https://digitally.cognizant.com/learning-from-a-day-in-the-life-of-a-data-scientist-codex4748/
https://digitally.cognizant.com/learning-from-a-day-in-the-life-of-a-data-scientist-codex4748/

Cognizant 20-20 Insights

5 / Accelerating Machine Learning as a Service with Automated Feature Engineering

 ❙ Each model ends up with a customized data
pipeline, which become complex to manage
as they proliferate.

 ❙ The same features are created again and again
with each iteration of model development or
model rebuild.

 ❙ It is difficult to track data-feature/model lineage
since features are spread across data stores,
which makes it hard to access impact on the
model due to data drifts.

Of late, the exploration and adoption of automated
ML frameworks (like our Learning Evolutionary AI
Framework, or LEAF) is gaining traction with data

scientists as they endeavor to address automated
feature engineering (limited scope), model
selection and hyper-parameter tuning for the rapid
development of models. Their inherent automated
feature engineering is limited to a certain model,
i.e., it is technology with limited reusability.

The anatomy of a ‘feature’ and ‘feature store’
A feature is basically any input into an ML model.
It is a set of variables that are incorporated into an
ML model with the intention to improve model
performance and accuracy. Features are derived
values extracted from files and tables (a database) —
and more importantly, computed from one or
more tables. These are usually grouped together
to minimize operational overhead and optimize
storage. A feature, for example, can be any column
with a calculated, flagged or one hot encoded value.

Here are some sample questions that can be
turned into features by following relationships and
aggregations:

 ❙ “How often does this customer make a
purchase?”

 ❙ “How long has it been since this customer’s
last login?”

 ❙ “How much does the energy usage vary for this
customer?”

 ❙ “Does this customer typically buy luxurious or
economical holiday packages?”

A feature store is a central repository for storing
documented, curated, and access-controlled
features. It is a central place to store features that
are properties of data, be it in the form of statistical
derivations, piece of text, image pixel coordinates,
aggregated value of purchase history, etc. This
enables feature management to be uniform,
reliable, reusable and governed.

A feature store shouldn’t be perceived as a type
of new data store. In fact it should be recognized
as a store of feature recipes with occasional time
dependencies. For example, a feature like “number
of login attempts in the last hour” is used in fraud

A feature store shouldn’t be perceived as a type of new
data store. In fact it should be recognized as a store of
feature recipes with occasional time dependencies.

One common mitigation plan to reduce
all data-dependency-related risk in a
ML system is by adopting a centralized
ecosystem, wherein all features are
captured and catalogued for use.

Cognizant 20-20 Insights

6 / Accelerating Machine Learning as a Service with Automated Feature Engineering

models, customer service models and retention
models. Each model will be computing it at a
different historical point — the fraud model perhaps
during a logon attempt, the customer service call
at the point someone calls a call center and the
retention model a certain date for the model to be
built. But when the feature goes into production, it
needs to run every single time a customer calls the
call center (for example).

A feature store enables reusability of features
across the enterprise, as existing features are
visible to all potential users (e.g., business analysts,
business intelligence developers, data scientists,
etc.) across the business domain. The feature store
supports feature enrichment, ranking, discovery,

lineage (both data to feature and feature to model)
and lifecycle management.

Both development and model serving teams
need a diverse feature set, which can be met easily
through the store. This will enable both teams to
discover, store and manage features, while also
decommissioning features that are no longer
needed.

Figure 4 highlights some examples of features
that are commonly used across different lines of
business and which get recreated in every instance
of modeling. If harnessed properly, they can be
reused across different model sets, thus bringing
greater operational synergy and accelerating time-
to-market.

Figure 4

Business use cases where similar features are created and used in different models

Business Use Case Common Features Use-Case-Specific Features

Credit Risk
Modeling

Historical transaction data:
• Count of transactions in last period
• Amount of transactions in last period

Customer demographics data:
• Age/age group
• Marital status
• Tenure of customer

Geospatial data:
• Transaction location
• Geographical location of customer

POS data:
• Merchant data
• Vendor data

Accounts holding data:
• Account information

Time-specific data:
• Time interval of transactions
• Weekdays/weekend indicators
• Month-end/quarter-end indicators

Historical payment information:
• Number of on-time payments in last periods
• Amount of missed payments in last periods

Customer lifecycle data:
• Number of active accounts holding data

Historical delinquency data:
• Number of times the customer has been identified as delinquent in last periods

Customer
Attrition Model

Customer lifecycle data:
• Number of active accounts holding data NPS Score

Cost to customer data:
• Customer purchase amount
• Customer purchase products

Customer engagement data:
• Call history with customer executives

Recommendation
Model

Product data:
• Product information data
• Historical product search data

Spend pattern data:
• Historical spend in product type and categories

User generated content — ratings and reviews data:
• Ratings and reviews of the product provided by the customer

Cognizant 20-20 Insights

7 / Accelerating Machine Learning as a Service with Automated Feature Engineering

How to build a feature store
Digital-native organizations, like LinkedIn,7 Uber
and AirBnB,8 have achieved ML scale to serve all of
their AI needs across all their products and regions
from a single enterprise-wide ML system. In each
case, a feature store plays a central role in training
and serving ML models.

For example, Uber’s Michelangelo9 framework
democratizes ML and makes scaling AI to meet
the needs of business as easy as requesting a ride.
It has a centralized feature store for collecting and
sharing features. Its platform team curates a core
set of widely applicable features and data scientists
contribute more features as part of the ongoing
model-building process. And metadata created

for each feature is used to track ownership, how
it is computed and where it is used. It provides
functionality to select features by name and join
keys, and both online and offline pipelines are auto-
configured.

Building a feature store can be broken down to
development of four key functional areas — feature
extraction, feature selection, feature synthesis
and feature governance — along with other
functionalities (see Figure 5).

The technical solution design has to be in sync with
existing IT technologies and related policies, as
introducing a new technology stack in any digital
immigrant is a long, drawn-out process.

Figure 5

Key functionalities that must be built in a feature store in a phased manner

FEATURE STORE

Process &
Workflow Management

Sharing

Audit Trail

Task Management

Review Checklist

REPORTS

ADMINISTRATION

Feature Management
& Governance

Automated Feature Discovery

Deep Feature Synthesis

Feature Catalog Setup

Feature Group Setup

Feature Approval,
Decommission & Review

Feature Deployment
& Monitoring

Feature Reference by Model

Feature Use in Production

Feature Usage Monitoring

Duplicate Alert

Feature Deployment

Feature-Model Linkage Graph | Feature Usage Report | Feature 360 View | Feature Issue Summary

User Management | Feature Source Data Mapping | Configuration Tables Management | Role Management

Cognizant 20-20 Insights

8 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Figure 6 offers a peek inside into the key technical
components required and suggested technologies
to achieve them.

 ❙ Feature computation engine: This executes
the feature engineering jobs (scheduled or ad
hoc) using standard frameworks.

 ❙ User interface: An interface for DS (consumers)
and ML engineers (producers) to explore and
use features for creating training data sets
and supporting production models. The store
provides feature information like ranking,
definition, version and new request for achieving
operational efficiencies in the ML model
lifecycle.

 ❙ Feature metadata: A storage layer that retains
feature documents like owners, definitions,
versions, hierarchies, etc. which is referred to for
feature discovery.

 ❙ Feature data store: A data layer wherein
computed features are stored for easy access
either through an API or UI.

 ❙ Feature governance: Essential component of
the feature store that governs the access and
rights to a feature. As the feature store expands
with thousands of features, controlling access to
sensitive features and retiring unused features
becomes more important.

How feature stores function

To build and deploy models rapidly, organizations
must address the need of feature computing and
serving as it takes significant amounts of time for
them to compute. This can be solved by building
a feature store within each data store and using
a shared feature computation engine for serving
features to both batch and real-time models. In an
ideal scenario, features for each model would be
pulled directly from the feature store with reference
to common entities like customer IDs. Figure 7
(next page) illustrates how data flows into a feature
store and how it serves both model training and
production.

Figure 6

Key components required to build a feature store

Feature Computation Engine
(e.g., Spark, Flink) User Interface

Feature Metadata
(e.g., Hive, SQL)

Feature Data Store
(e.g., Hive, SQL)

Feature Governance
(e.g., Informatica EDC)

Cognizant 20-20 Insights

9 / Accelerating Machine Learning as a Service with Automated Feature Engineering

How to generate and capture a feature
in a store

There are several approaches to creating features in
a feature store:

 ❙ Automated feature synthesis: Automated
feature engineering has become a key ML
research area. It has led to the proliferation of
frameworks that can automatically synthetize
features from one or multiple data tables in
relational data stores. Genetic algorithms offer
another approach not only for feature selection
but also for generation.10

 > One of the methods for populating feature
stores is deep feature synthesis,11 which
can automatically derive predictive models
from raw data. This is used to automate the
population of feature stores for structured,
transactional and relational data sets.

 > To achieve this automation, we first propose
using deep feature synthesis algorithms to
automatically generate features for relational
data sets. The algorithm follows relationships
in the data to a base field, and then

sequentially applies mathematical functions
along that path to create the final feature.

 > Second, we implement a generalizable ML
pipeline and tune it using a novel Gaussian
copula process-based approach.12

 ❙ Automated extraction of features from the
existing model can be achieved by using the
REGEX approach, fuzzy matching and entity
extraction.

 ❙ Manual creation of new and custom features
as identified by the data scientist.

 ❙ Feature DNA: Predict feature engineering
based on attribute usage in new models (e.g.,
guided feature engineering).13

Challenges while populating features
in a feature store

As enterprises embark on building shared feature
stores and computation engines, the following
must be addressed to achieve success:

 ❙ Feature importance: A feature store provides
important attributes to ML algorithms, but

Figure 7

Data flow in a feature store ecosystem

Streaming Engine Online Feature
Store

O�line Feature
Store

Training Set

ML Model

BI Reporting &
Tools

ML Model
Development

Raw Data
Stream

Historical
Data Store

Cognizant 20-20 Insights

10 / Accelerating Machine Learning as a Service with Automated Feature Engineering

having too many precomputed elements
doesn’t necessarily guarantee increased
model accuracy and it also means additional
computation and storage increases in
processing overhead. Defining the right feature
level, historical duration and hierarchy is key.

 ❙ Feature processing: As enterprises generally
have different processing engines and stores
for real and batch data streams, serving both
through a common feature store can require
complex reengineering.

 ❙ Feature complexity: Derived features can be
complex; it takes time to compute such complex

features in real time or in the production
environment. Data scientists and feature store
governors need to agree as to what needs to be
preprocessed and which features need to be
served directly in production.

 ❙ Operating model: Enterprises will have multiple
data silos and varied data storage technologies.
Defining the right operating models for
functionalities that need to be centralized and
decentralized in a feature store will aid adoption
across the enterprise. See Figure 8 for an
illustration of the pros and cons of centralized vs.
decentralized stores.

Figure 8

Feature store operating model pros & cons

PROS CONS

C
en

tr
al

iz
ed

 ❙ One feature execution environment — centralized historical information on
logs/execution during fails.

 ❙ One version control environment — ability to see history, enforce peer review
before rollout of new version/updates (just like with any software updates to
prod code using Github as an example).

 ❙ Ability to manage central execution in federated environments (H20, lPython,
Spark, etc.).

 ❙ Centralized database of ALL features (no hidden information, or some teams not
knowing what others are doing and, usually, doubling their work instead
of reusing).

 ❙ If for example, S3 is used as the input and output for each feature engineering
task — then central environment is a key for any future migrations (migrating
from one environment) rather than migrating a spaghetti of different team
jobs without central view/control — this future-looking view in terms of future
migrations/changes is probably the most compelling.

 ❙ Data governance process to validate new rollouts/changes against duplication.

 ❙ Next gen features on top of MDM/data governance like natural language
search of the features.

 ❙ Ability for BI-level users to find data they need, understand it and use it for
reporting, etc.

 ❙ Create overflow jobs to the execution
infrastructure (H20, IPython, Spark, etc.) but
cannot manage that execution environment
directly — need to manage execution in DAG
fashion.

 ❙ Hard to control/failover final execution
environment.

 ❙ Teams are forced to use central data
governance/execution governance tool
(e.g., Domino + Alation) which slows down a
bit going to production/changes.

D
ec

en
tr

al
iz

ed

 ❙ Ad hoc infrastructure usage — independent execution environments,
so there is less overflow risk.

 ❙ Teams can create their own data governance/execution environment per
their own strong views.

 ❙ Easier to put into production/changes to a small sub-environment.

 ❙ Migration is a huge problem — any central
changes will lead to months of reengineering
in a decentralized fashion prone to mistakes.

 ❙ No central view of all features — hard to reuse/
avoid duplication of effort.

 ❙ BI users can’t see what they can use.

Cognizant 20-20 Insights

11 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Feature store business benefits
A feature store does not merely bring cost and
operational efficiencies through shared computation
and storage; it also enables the enterprise to achieve

other business benefits like faster go-to-market,
improved model accuracy and enhanced IT agility
(see Figure 9).

A feature store does not merely bring cost
and operational efficiencies through shared
computation and storage; it also enables the
enterprise to achieve other business benefits
like faster go-to-market, improved model
accuracy and enhanced IT agility.

Figure 9

Key feature store benefits

Reduced GTM
Potential to reduce
time-to-market by ~50%

Lower TCO
Automation and simplification
driven operational synergies

Improved Model Accuracy
Availability of features and
recommendations will improve
model performance

Data-Feature-Model Lineage
Improved data quality

Future-Technology-Proof
Centralized processing and
storage makes future technology
migration easy

Adoption of Champion
Challenger Framework
Brings flexibility to build multiple
models to solve a problem
statement

Cognizant 20-20 Insights

How a Bank Used AutoML &
a Feature Store to Enhance
Fraud Detection
A large global bank wanted to radically transform its credit and debit card transaction
fraud scoring by moving away from a rule-based system to an AI model-led decision
engine. The objective was to design a new architecture to build AI models as challenger
models to existing systems for reducing false positives and improving the fraud
detection rate.

The solution adopted was a new fraud modeling ecosystem with AutoML pipelines
which supported the requirement of running four different fraud models (batch and real
time) as part of a champion/challenger framework: The champion was the incumbent
model handling transaction scoring, while the challenger model offered an independent
model that processed the same transaction in parallel to the champion model before a
rule system chooses which model score to rely on for transaction approval.

The flexibility of switching models between batch and real time was achieved by
developing a feature store with hundreds of features (real time and batch) to support
all existing and in-flight models. The new system was able to reduce false positives by
more than 80%; and with the improved fraud detection rate, overall savings were more
than $60 million.

12 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Quick Take

Cognizant 20-20 Insights

13 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Looking ahead
As digital immigrant enterprises ascend the ML
maturity ladder and embrace new methodologies,
frameworks and technologies used by digital
native businesses, they should be mindful that their
technology platforms, organizational structures,
business use cases, IT policies and governance, and
regulatory environment are completely different
and complex. Frameworks like Uber’s Michelangelo
need to be customized to individual needs.

Following some initial success in ML projects, it is
imperative that the organization focuses on how
to translate that individual success into an ML
program success. As the journey evolves, focus
needs to be on change management, governance
and automation to achieve at-scale ML objectives.
With a focus on streamlining and automation
in data engineering, building a feature store is
the solution.

Building a feature store is a gradual process and
should be seen as such, since with every new
model built, the set of features available expands
with the store, which influences the development
of subsequent models as more features become
available for exploration and modeling.

Enterprises should consider the following steps:

 ❙ Build a feature store for databases that are
commonly used, like customer records or
transactional data sets (e.g., payment record,
order history, etc.), which are referenced in most
business use cases such as customer acquisition,
retention, fraud and KYC. Understanding that
they are used for modeling and reporting will
help in deriving the right feature groups to
create, compute and share.

 ❙ Start by targeting commonly performed
featured computations like converting
categorical to numerical variables, one-
hot-encoding, feature binning, aggregates
and transformations, as these tasks are
performed by data scientists in nearly all
model iterations. This could be followed by
more complex features like joining multiple
tables and performing nested functions, or
complex approaches such as automated feature
extraction from existing models and feature
recommendation engines.

 ❙ Pursue change management in terms of
how model development and deployment
need to be managed and governed. Every
data scientist has their own tool preferences
and preferred ways of performing data analysis
in their daily activities. Establishing feature
stores will require that existing preferences
and processes will be changed or new ones
implemented. Governance must be put in place
so that set guidelines on feature computation,
model development strategies, etc. are followed
by key stakeholders like ML engineers and data
scientists.

 ❙ Establishing requisite feature store
governance is essential from day zero, as
no enterprise wants to publish and maintain
duplicate, decaying features. The governance
needed must provide that fine balance between
promoting innovation (i.e., identification of new
features by data scientists) and mandating the
use of features from the store.

Cognizant 20-20 Insights

14 / Accelerating Machine Learning as a Service with Automated Feature Engineering

Endnotes
1 For this report, we will be using machine learning (ML) and AI interchangeably with no strong distinction.

2 Lorica, B., & Nathan, P. (2019), AI Adoption in the Enterprise.

3 Lorica, B., & Nathan, P. (2019), Evolving Data Infrastructure.

4 Lorica, B., & Nathan, P. (2019),The State of Machine Learning Adoption in the Enterprise.

5 Machine learning (ML) is a subset of artificial intelligence (AI) that enables systems or applications to self-learn and improve
from each experience without being explicitly programmed.

6 D. Sculley, G. H., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., & Young, M. “Machine Learning: The High-
Interest Credit Card of Technical Debt.” Google Inc. (2014).

7 https://engineering.linkedin.com/blog/2019/01/scaling-machine-learning-productivity-at-linkedin.

8 Atul Kale and Xiaohan Zeng, “ML Infra @ AirBnB.” https://cdn.oreillystatic.com/en/assets/1/event/278/Bighead_%20
Airbnb_s%20end-to-end%20machine%20learning%20platform%20Presentation.pdf.

9 Hermann, J., & Balso, M.D. (2017, Sept. 5). “Meet Michelangelo: Uber’s Machine Learning Platform.” Retrieved from eng.
uber.com; https://eng.uber.com/michelangelo/.

10 Julio, M.R. C., Luna-Rosas, F. J., Miguel, M.G., Alejandro , C.O. & López-Rivas, V. (2012). Optimal Feature Generation with
Genetic Algorithms and FLDR in a Restricted Vocabulary Speech Recognition System.

11 James Max Kanter and Kalyan Veeramachaneni, Deep Feature Synthesis: Towards Automating Data Science Endeavors.

12 Ibid.

13 Muthiah, P., & Li, J. (2018, Nov. 13). “Airbnb Engineering and Data Science.” Retrieved from medium.com: https://medium.
com/airbnb-engineering/druid-airbnb-data-platform-601c312f2a4c.

https://engineering.linkedin.com/blog/2019/01/scaling-machine-learning-productivity-at-linkedin
https://cdn.oreillystatic.com/en/assets/1/event/278/Bighead_%20Airbnb_s%20end-to-end%20machine%20learning%20platform%20Presentation.pdf
https://cdn.oreillystatic.com/en/assets/1/event/278/Bighead_%20Airbnb_s%20end-to-end%20machine%20learning%20platform%20Presentation.pdf
https://eng.uber.com/michelangelo/
https://medium.com/airbnb-engineering/druid-airbnb-data-platform-601c312f2a4c
https://medium.com/airbnb-engineering/druid-airbnb-data-platform-601c312f2a4c

Cognizant 20-20 Insights

15 / Accelerating Machine Learning as a Service with Automated Feature Engineering

About the authors

Amit Agarwal
Associate Principal Data Scientist, Cognizant

Amit Agarwal is Associate Principal Data Scientist in Cognizant’s AI, Data Sciences and Machine Learning
Practice in UK&I, where he is responsible for leading work in advanced analytics, AI and ML work
conducted for banking and financial services clients. In his role, Amit leads team of data scientists and ML
experts engaged in developing and delivering innovative AI solutions for banking clients across various
domains. He works closely with clients to help them achieve their strategic objectives, architecting AI
solutions, delivering large-scale complex AI/ML solutions and consulting on ML as a service (MLaaS)
propositions. Amit also collaborates with the wider fintech and partner ecosystem to create disruptive
industry solutions and propositions, and he is responsible for data sciences’ go-to-market strategy in the
UK&I market. He has over 15 years of experience in modeling and analytics consulting including at UBS and
PriceWaterhouseCoopers. He also holds a CFA charter and has FRM certification. Amit can be reached at
Amit.Agarwal@cognizant.com | www.linkedin.com/in/amit-agarwal-98a4969/?originalSubdomain=uk

Matthew O’Kane
European AI & Analytics Practice Lead, Cognizant

Matthew O’Kane leads Cognizant’s AI & Analytics practice across Europe. His team helps clients modernize
their data and transform their business using AI. Matthew brings close to two decades of experience in
data and analytics, gained across the financial service industry and in consulting. He joined Cognizant after
leading analytics practices at Accenture, EY and Detica (now BAE Systems Applied Intelligence). Over this
period, he has delivered multiple large-scale AI/ML implementations, helped clients transition analytics
and data to the cloud and collaborated with MIT on new prescriptive ML algorithms. He brings a passion for
the potential for AI and analytics to transform clients’ businesses across functional areas and the customer
experience. Matthew lives with his wife and two children in Winchester, England. He’s an avid cook,
enjoying everything from baking with his daughter to experimenting with ‘sous vide’ techniques. He can be
reached at Matthew.OKane@cognizant.com | www.linkedin.com/in/matthewokane/.

mailto:Amit.Agarwal%40cognizant.com?subject=
http://www.linkedin.com/in/amit-agarwal-98a4969/?originalSubdomain=uk
mailto:Matthew.OKane%40cognizant.com?subject=
http://www.linkedin.com/in/matthewokane/

© Copyright 2019, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means,electronic, mechanical,
photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is subject to change without notice. All other trademarks
mentioned herein are the property of their respective owners.

Codex 4971.02

About Cognizant Artificial Intelligence Practice
As part of Cognizant Digital Business, Cognizant’s Artificial Intelligence Practice provides advanced data collection and management expertise, as
well as artificial intelligence and analytics capabilities that help clients create highly-personalized digital experiences, products and services at every
touchpoint of the customer journey. Our AI solutions glean insights from data to inform decision-making, improve operations efficiencies and reduce
costs. We apply Evolutionary AI, Conversational AI and decision support solutions built on machine learning, deep learning and advanced analytics
techniques to help our clients optimize their business/IT strategy, identify new growth areas and outperform the competition. To learn more, visit us
at www.cognizant.com/ai.

About Cognizant
Cognizant (Nasdaq-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and technology
models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient business-
es. Headquartered in the U.S., Cognizant is ranked 193 on the Fortune 500 and is consistently listed among the most admired companies in the world.
Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant.

World Headquarters

500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277

European Headquarters

1 Kingdom Street
Paddington Central
London W2 6BD England
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102

India Operations Headquarters

#5/535 Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060

APAC Headquarters

1 Changi Business Park Crescent,
Plaza 8@CBP # 07-04/05/06,
Tower A, Singapore 486025
Phone: + 65 6812 4051
Fax: + 65 6324 4051

http://www.cognizant.com/ai
http://www.cognizant.com
http://www.twitter.com/cognizant

